

 Please see the administrative notes on page ii-1

 RECIPIENTS OF THIS DRAFT ARE INVITED TO
SUBMIT, WITH THEIR COMMENTS, NOTIFICATION
OF ANY RELEVANT PATENT RIGHTS OF WHICH
THEY ARE AWARE AND TO PROVIDE SUPPORT-
ING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
LOGICAL, COMMERCIAL AND USER PURPOSES,
DRAFT INTERNATIONAL STANDARDS MAY ON
OCCASION HAVE TO BE CONSIDERED IN THE
LIGHT OF THEIR POTENTIAL TO BECOME STAN-
DARDS TO WHICH REFERENCE MAY BE MADE IN
NATIONAL REGULATIONS.

Reference number
ISO/FDIS 9506-1:2002(E)

© ISO 2002

FINAL
DRAFT

ISO/TC 184/SC 5

Secretariat: ANSI

Voting begins on:
2002-12-26

Voting terminates on:
2003-02-26

INTERNATIONAL
STANDARD

ISO/FDIS
9506-1

Industrial automation systems —
Manufacturing Message Specification —
Part 1:
Service definition

Systèmes d'automatisation industrielle — Spécification de messagerie
industrielle —

Partie 1: Définition des services

ISO/FDIS 9506-1:2002(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

Copyright notice
This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted
under the applicable laws of the user's country, neither this ISO draft nor any extract from it may be
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
photocopying, recording or otherwise, without prior written permission being secured.

Requests for permission to reproduce should be addressed to either ISO at the address below or ISO's
member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

ii © ISO 2002 – All rights reserved

ISO/FDIS 9506-1:2002(E)

© ISO 2002 – All rights reserved ii-1

In accordance with the provisions of Council Resolution 15/1993, this document is circulated in the
English language only.

ISO/FDIS 9506-1:2002(E)

ii-2 © ISO 2002 – All rights reserved

(Blank page)

ISO 9506-1: 2002(E)

iii© ISO 2002 – All rights reserved

Contents Page

Foreword . xi

Introduction . xii

1 Scope . 1

2 Normative references . 1

3 Definitions . 2
3.1 Reference Model definitions . 2
3.2 Service Convention definitions . 3
3.3 Abstract Syntax Notation definitions . 3
3.4 Other definitions . 3

4 Abbreviations . 6

5 Conventions . 7
5.1 Base of Numeric Values . 7
5.2 Object modelling . 7
5.3 Specialisation of MMS . 8
5.4 Service Parameter Description . 9
5.5 Invocation Identifier on Service Primitives . 11
5.6 List Of Modifier on Service Primitives . 11
5.7 Addressing in MMS . 11
5.8 Service Conventions . 11
5.9 Calling and Called MMS-user . 11
5.10 Sending and Receiving MMS-user and MMPM . 12
5.11 Requesting and Responding MMS-user . 12
5.12 Client and Server of a Service . 12
5.13 Relationship of Object Models to Service Tables . 13

6 MMS in the OSI Environment . 13
6.1 Information Processing Tasks and Real Systems . 13
6.2 Application Processes . 13
6.3 Interaction of Application Processes . 13
6.4 Interaction of Application Processes in OSI . 14
6.5 Structure of Application Entities . 14
6.6 Addressing of Application Entities . 14
6.7 Application Context . 15
6.8 Presentation Context, Abstract Syntaxes, and Transfer Syntaxes 15
6.9 MMS requirements of the communication system . 15

7 The Virtual Manufacturing Device . 21
7.1 Introduction . 21
7.2 The Structure of a VMD . 22
7.3 Transactions . 30
7.4 Specification of Named objects . 32
7.5 Object Name structure . 35
7.6 Object Class structure . 36

8 Environment And General Management services . 36
8.1 Introduction and Models . 36
8.2 Initiate service . 45
8.3 Conclude service . 51
8.4 Abort service . 52
8.5 Cancel service . 53
8.6 Reject service . 55

9 Conditioned service response . 59
9.1 Introduction and Models . 59
9.2 AccessCondition parameter . 65

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

iv © ISO 2002 – All rights reserved

9.3 DefineAccessControlList service . 67
9.4 GetAccessControlListAttributes service . 68
9.5 ReportAccessControlledObjects service . 71
9.6 DeleteAccessControlList service . 72
9.7 ChangeAccessControl service . 73

10 VMD Support Services . 77
10.1 Introduction . 77
10.2 Status Response parameter . 77
10.3 Status service . 78
10.4 UnsolicitedStatus service . 79
10.5 GetNameList service . 79
10.6 Identify service . 81
10.7 Rename service . 82
10.8 GetCapabilityList service . 84
10.9 VMDStop service . 85
10.10 VMDReset service . 86

11 Domain Management Services . 87
11.1 Introduction and Models . 87
11.2 InitiateDownloadSequence service . 93
11.3 DownloadSegment service . 95
11.4 TerminateDownloadSequence service . 97
11.5 InitiateUploadSequence service . 98
11.6 UploadSegment service . 100
11.7 TerminateUploadSequence service . 101
11.8 RequestDomainDownload service . 102
11.9 RequestDomainUpload service . 104
11.10 LoadDomainContent service . 105
11.11 StoreDomainContent service . 107
11.12 DeleteDomain service . 110
11.13 GetDomainAttributes service . 111

12 Program Invocation Management Services . 113
12.1 Introduction and Models . 113
12.2 CreateProgramInvocation service . 120
12.3 DeleteProgramInvocation service . 123
12.4 Start service . 124
12.5 Stop service . 128
12.6 Resume service . 129
12.7 Reset service . 132
12.8 Kill service . 133
12.9 GetProgramInvocationAttributes service . 134
12.10 Select service . 137
12.11 AlterProgramInvocationAttributes service . 139
12.12 ReconfigureProgramInvocation service . 141

13 Unit Control . 143
13.1 Introduction and Models . 143
13.2 Control Element . 144
13.3 InitiateUnitControlLoad service . 145
13.4 UnitControlLoadSegment service . 147
13.5 UnitControlUpload service . 149
13.6 StartUnitControl service . 151
13.7 StopUnitControl service . 152
13.8 CreateUnitControl service . 154
13.9 AddToUnitControl service . 155
13.10 RemoveFromUnitControl service . 156
13.11 GetUnitControlAttributes service . 157
13.12 LoadUnitControlFromFile service . 159
13.13 StoreUnitControlToFile service . 160
13.14 DeleteUnitControl service . 161

14 Variable Access Services . 163

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

v© ISO 2002 – All rights reserved

14.1 The MMS Variable Access Model . 164
14.2 Specification of Types . 171
14.3 Specification of Alternate Access . 175
14.4 Specification of Data Values . 179
14.5 Specification of Access to Variables . 181
14.6 Read service . 184
14.7 Write service . 185
14.8 InformationReport service . 187
14.9 GetVariableAccessAttributes service . 188
14.10 DefineNamedVariable service . 190
14.11 DeleteVariableAccess service . 192
14.12 DefineNamedVariableList service . 194
14.13 GetNamedVariableListAttributes service . 196
14.14 DeleteNamedVariableList service . 197
14.15 DefineNamedType service . 199
14.16 GetNamedTypeAttributes service . 201
14.17 DeleteNamedType service . 202
14.18 Conformance . 204
14.19 Guidance To Implementors . 205

15 Data Exchange Management Services . 206
15.1 The Data Exchange management model . 206
15.2 ExchangeData service . 207
15.3 GetDataExchangeAttributes service . 209

16 Semaphore Management Services . 210
16.1 The Semaphore Management Model . 210
16.2 TakeControl service . 217
16.3 RelinquishControl service . 221
16.4 DefineSemaphore service . 222
16.5 DeleteSemaphore service . 224
16.6 ReportSemaphoreStatus service . 226
16.7 ReportPoolSemaphoreStatus service . 227
16.8 ReportSemaphoreEntryStatus service . 229
16.9 AttachToSemaphore Modifier . 232
16.10 Conformance . 234

17 Operator Communication services . 235
17.1 The Operator Communications Model . 235
17.2 Input service . 237
17.3 Output service . 239

18 Event Management services . 241
18.1 Event Detection and Notification . 242
18.2 TriggerEvent service . 247
18.3 EventNotification service . 248
18.4 AcknowledgeEventNotification service . 250
18.5 GetAlarmSummary service . 252
18.6 GetAlarmEnrollmentSummary service . 256
18.7 Attach To Event Condition Modifier . 260
18.8 Conformance Requirements Unique to Event Management . 262

19 Event Condition services . 263
19.1 Event Conditions . 263
19.2 DefineEventCondition service . 268
19.3 DeleteEventCondition service . 271
19.4 GetEventConditionAttributes service . 273
19.5 ReportEventConditionStatus service . 275
19.6 AlterEventConditionMonitoring service . 277

20 Event Action services . 279
20.1 Event Actions . 279
20.2 DefineEventAction service . 280
20.3 DeleteEventAction service . 282

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

vi © ISO 2002 – All rights reserved

20.4 GetEventActionAttributes service . 284
20.5 ReportEventActionStatus service . 285

21 Event Enrollment services . 287
21.1 Event Enrollments . 287
21.2 DefineEventEnrollment service . 295
21.3 DeleteEventEnrollment service . 299
21.4 GetEventEnrollmentAttributes service . 302
21.5 ReportEventEnrollmentStatus service . 306
21.6 AlterEventEnrollment service . 308

22 Event Condition List services . 311
22.1 Event Condition Lists . 311
22.2 DefineEventConditionList service . 312
22.3 DeleteEventConditionList service . 314
22.4 AddEventConditionListReference service . 316
22.5 RemoveEventConditionListReference service . 318
22.6 GetEventConditionListAttributes service . 321
22.7 ReportEventConditionListStatus service . 322
22.8 AlterEventConditionListMonitoring service . 324

23 Journal Management services . 326
23.1 The Journal Management Model . 326
23.2 ReadJournal service . 328
23.3 WriteJournal service . 336
23.4 InitializeJournal service . 339
23.5 ReportJournalStatus service . 340
23.6 CreateJournal service . 342
23.7 DeleteJournal service . 343
23.8 Conformance Requirements Unique to Journals . 344

24 Errors . 344
24.1 Error Type . 344
24.2 Description of structure of generic error type: . 345
24.3 Additional Code . 351
24.4 Additional Detail . 351
24.5 Modifier Position . 351

25 MMS Standardized Names . 351
25.1 Introduction . 351
25.2 Unique Name Assignment Mechanism . 352
25.3 MMS Standardized Names . 352
25.4 End of Module . 355

26 Conformance . 355
26.1 Introduction . 355
26.2 Conformance Building Blocks (CBBs)) . 355
26.3 Static Conformance Requirements . 357
26.4 Calling MMS-user Conformance Requirements . 357
26.5 Called MMS-user Conformance Requirements . 357
26.6 Server Conformance Requirements . 357
26.7 Client Conformance Requirements . 358
26.8 Parameter CBB Conformance Requirements . 359
26.9 Dynamic Conformance . 360

Annex A (normative) Relationship of the VMD to an OSI Communication System 361
A.1 Introduction . 361
A.2 Addressing of Application Entities . 362
A.3 Conformance Requirements . 362

Annex B (normative) Requirements for Companion Standards . 363
B.1 Introduction . 363
B.2 Scope . 363
B.3 Requirements . 363

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

vii© ISO 2002 – All rights reserved

B.4 Outline of an MMS Companion Standard . 363

Annex C (normative) File Access service . 369
C.1 ObtainFile service . 369

Annex D (informative) File Management services . 371
D.1 Introduction . 371
D.2 The MMS File Model . 371
D.3 FileOpen service . 373
D.4 FileRead service . 374
D.5 FileClose service . 375
D.6 FileRename service . 376
D.7 FileDelete service . 378
D.8 FileDirectory service . 379
D.9 File Attributes parameter . 381
D.10 Additional Specification for the Conclude Service . 381

Annex E (informative) Scattered Access . 383
E.1 Introduction . 383
E.2 Variable Specification parameter . 385
E.3 DefineScatteredAccess service . 386
E.4 GetScatteredAccessAttributes service . 388
E.5 DeleteVariableAccess service . 390
E.6 DefineNamedVariableList service . 390
E.7 GetNamedVariableListAttributes service . 391
E.8 DeleteNamedVariableList service . 391

Annex F (informative) MMS on TCP/IP . 392
F.1 Introduction . 392
F.2 General Internet Environments . 392
F.3 References . 392

Index . 393

Figures

Figure 1 - Relationships of Client and Server, Requesting and Responding MMS-user, and Sending
and Receiving MMPM . 12

Figure 2 - M-ASSOCIATE service . 16
Figure 3 - M-RELEASE service . 18
Figure 4 - M-DATA service . 19
Figure 5 - M-U-ABORT service . 20
Figure 6 - M-P-ABORT service . 21
Figure 7 - Environment Management State Diagram . 37
Figure 8 - Domain State Diagram . 91
Figure 9 - Upload State Machines . 93
Figure 10 - LoadDomainContent . 105
Figure 11 - StoreDomainContent . 108
Figure 12 - Program Invocation State Diagram . 119
Figure 13 - Semaphore Entry model . 215
Figure 14 - Token Semaphore model . 216
Figure 15 - Pool Semaphore model . 217
Figure 16 - Operator Station State Diagram . 237
Figure 17 - Relationship Between Event Management Objects . 242
Figure 18 - Network-triggered Event Condition State Diagram . 266
Figure 19 - Monitored Event Condition State Diagram . 267
Figure 20 - Event Action State Diagram . 286
Figure 21 - State Diagram for &alarmAcknowledgmentRule = none . 292
Figure 22 - State Diagram for &alarmAcknowledgmentRule = simple . 293
Figure 23 - State Diagram for &alarmAcknowledgmentRule = ack-active 294
Figure 24 - State Diagram for &alarmAcknowledgmentRule = ack-all . 295
Figure A.1 - The MMS Server Application Process . 361
Figure D.1 - File Read State Machine . 372

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

viii © ISO 2002 – All rights reserved

Tables

Table 1 - M-ASSOCIATE service . 16
Table 2 - M-Release service parameters . 18
Table 3 - M-Data service parameters . 19
Table 4 - M-U-Abort service parameters . 20
Table 5 - M-P-Abort service parameters . 21
Table 6 - Local control . 29
Table 7 - Name Class and Scope . 33
Table 8 - Object Name . 35
Table 9 - Object Class . 36
Table 10 - Initiate service . 45
Table 11 - Conclude service . 51
Table 12 - Abort service . 53
Table 13 - Cancel service . 54
Table 14 - Reject service . 55
Table 15 - Access Condition parameter . 66
Table 16 - DefineAccessControlList service . 67
Table 17 - GetAccessControlListAttributes service . 69
Table 18 - ReportAccessControlledObjects service . 71
Table 19 - DeleteAccessControlList service . 72
Table 20 - ChangeAccessControl service . 74
Table 21 - Status Response parameter . 77
Table 22 - Status service . 78
Table 23 - UnsolicitedStatus service . 79
Table 24 - GetNameList service . 80
Table 25 - Identify service . 81
Table 26 - Rename service . 83
Table 27 - GetCapabilityList service . 84
Table 28 - VMDStop service . 85
Table 29 - VMD attributes after VMDStop . 86
Table 30 - VMDReset service . 86
Table 31 - InitiateDownloadSequence service . 94
Table 32 - DownloadSegment service . 96
Table 33 - TerminateDownloadSequence service . 97
Table 34 - InitiateUploadSequence service . 99
Table 35 - UploadSegment service . 100
Table 36 - TerminateUploadSequence service . 101
Table 37 - RequestDomainDownload service . 102
Table 38 - RequestDomainUpload service . 104
Table 39 - LoadDomainContent service . 106
Table 40 - StoreDomainContent service . 108
Table 41 - DeleteDomain service . 110
Table 42 - GetDomainAttributes service . 111
Table 43 - CreateProgramInvocation service . 120
Table 44 - DeleteProgramInvocation service . 123
Table 45 - Start service . 125
Table 46 - Stop service . 128
Table 47 - Resume service . 129
Table 48 - Reset service . 132
Table 49 - Kill service . 133
Table 50 - GetProgramInvocationAttributes service . 135
Table 51 - Select service . 138
Table 52 - AlterProgramInvocationAttributes service . 140
Table 53 - ReconfigureProgramInvocation service . 141
Table 54 - Control Element parameter . 144
Table 55 - Interaction of Unit Control Primitives . 146
Table 56 - InitiateUnitControlLoad service . 146
Table 57 - UnitControlLoadSegment service . 147
Table 58 - UnitControlUpload service . 149
Table 59 - StartUnitControl service . 151
Table 60 - StopUnitControl service . 153

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

ix© ISO 2002 – All rights reserved

Table 61 - CreateUnitControl service . 154
Table 62 - AddToUnitControl service . 155
Table 63 - RemoveFromUnitControl service . 156
Table 64 - GetUnitControlAttributes service . 158
Table 65 - LoadUnitControlFromFile service . 159
Table 66 - StoreUnitControlToFile service . 160
Table 67 - DeleteUnitControl service . 162
Table 68 - Type Description parameter . 172
Table 69 - Type Specification parameter . 175
Table 70 - Alternate Access parameter . 176
Table 71 - Access Result parameter . 179
Table 72 - Data parameter . 180
Table 73 - Variable Access Specification parameter . 181
Table 74 - Variable Specification parameter . 182
Table 75 - Address parameter . 183
Table 76 - Read service . 184
Table 77 - Write service . 186
Table 78 - InformationReport service . 187
Table 79 - GetVariableAccessAttributes service . 189
Table 80 - DefineNamedVariable service . 190
Table 81 - DeleteVariableAccess service . 192
Table 82 - DefineNamedVariableList service . 194
Table 83 - GetNamedVariableListAttributes service . 196
Table 84 - DeleteNamedVariableList service . 198
Table 85 - DefineNamedType service . 200
Table 86 - GetNamedTypeAttributes service . 201
Table 87 - DeleteNamedType service . 203
Table 88 - DataExchange service . 207
Table 89 - GetDataExchangeAttributes service . 209
Table 90 - TakeControl service . 217
Table 91 - RelinquishControl service . 221
Table 92 - DefineSemaphore service . 223
Table 93 - DeleteSemaphore service . 225
Table 94 - ReportSemaphoreStatus service . 226
Table 95 - ReportPoolSemaphoreStatus service . 228
Table 96 - ReportSemaphoreEntryStatus service . 230
Table 97 - AttachToSemaphore Modifier . 232
Table 98 - Input service . 238
Table 99 - Output service . 240
Table 100 - TriggerEvent service . 247
Table 101 - EventNotification service . 248
Table 102 - AcknowledgeEventNotification service . 251
Table 103 - GetAlarmSummary service . 253
Table 104 - GetAlarmEnrollmentSummary service . 257
Table 105 - Attach To Event Condition Modifier . 261
Table 106 - DefineEventCondition service . 268
Table 107 - DeleteEventCondition service . 271
Table 108 - GetEventConditionAttributes service . 273
Table 109 - ReportEventConditionStatus service . 276
Table 110 - AlterEventConditionMonitoring service . 277
Table 111 - DefineEventAction service . 281
Table 112 - DeleteEventAction service . 282
Table 113 - GetEventActionAttributes service . 284
Table 114 - ReportEventActionStatus service . 285
Table 115 - DefineEventEnrollment service . 296
Table 116 - DeleteEventEnrollment service . 299
Table 117 - GetEventEnrollmentAttributes service . 302
Table 118 - ReportEventEnrollmentStatus service . 307
Table 119 - AlterEventEnrollment service . 309
Table 120 - DefineEventConditionList service . 313
Table 121 - DeleteEventConditionList service . 315
Table 122 - AddEventConditionListReference service . 316
Table 123 - RemoveEventConditionListReference service . 319
Table 124 - GetEventConditionListAttributes service . 321

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

x © ISO 2002 – All rights reserved

Table 125 - ReportEventConditionListStatus service . 322
Table 126 - AlterEventConditionListMonitoring service . 324
Table 127 - ReadJournal service . 329
Table 128 - WriteJournal service . 336
Table 129 - InitializeJournal service . 339
Table 130 - ReportJournalStatus service . 341
Table 131 - CreateJournal service . 342
Table 132 - DeleteJournal service . 343
Table 133 - Structure of Error Type . 345
Table C.1 - ObtainFile service . 369
Table D.1 - FileOpen service . 373
Table D.2 - FileRead service . 374
Table D.3 - FileClose service . 376
Table D.4 - FileRename service . 377
Table D.5 - FileDelete service . 378
Table D.6 - FileDirectory service . 379
Table D.7 - File Attributes parameter . 381
Table E.1 - Scattered Access Description parameter . 386
Table E.2 - DefineScatteredAccess service . 387
Table E.3 - GetScatteredAccessAttributes service . 389

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

xi© ISO 2002 – All rights reserved

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matter of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted
by the technical committees are circulated to the member bodies for voting. Publication as an International
 Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 9506-1 was prepared by Technical Committee ISO/TC 184, Industrial automation systems and integration,
Subcommittee SC 5, Architecture, communications and integration frameworks.

This second edition of ISO 9506-1 cancels and replaces the first edition (ISO 9506-1:2000), of which it constitutes
a technical revision. It incorporates several technical corrections to ISO 9506-1:2000. The first edition of
ISO 9506-1:2000 included corrections published in ISO/IEC 9506-1/Cor.1:1995 and in ISO/IEC 9506-1/Cor.2:1995,
the additional services published in ISO/IEC 9506-1/Amd.1:1993, and in ISO/IEC 9506-1/Amd.2:1995,
and the material published in ISO/TR 13345.

ISO 9506 consists of the following parts, under the general title Industrial automation systems — Manufacturing
Message Specification:

 — Part 1: Service definition
 — Part 2: Protocol specification

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

xii © ISO 2002 – All rights reserved

Introduction
This part of ISO 9506 provides a wide variety of services useful for various manufacturing and process control
devices. It is designed to be used both by itself and in conjunction with Companion Standards that describe the
application of subsets of these services to particular device types.

The services provided by the Manufacturing Message Specification (MMS) range from simple to highly complex.
It is not expected that all of these services will be supported by all devices. The subset to be supported is limited in
some cases by Companion Standards, and in all cases may be limited by the implementor. Characteristics important
in selection of a subset of services to be supported include:

a) applicability of the service to the device;

b) the complexity of services and requirements;

c) the complexity of provision of a particular class of service via the network versus the complexity of the
device.

Security considerations

When implementing MMS in secure or safety critical applications, features of the OSI security architecture may
need to be implemented. This International Standard provides simple facilities for authentication (passwords) and
access control. Systems requiring a higher degree of security will have to consider features beyond the scope of
this International Standard. This International Standard does not use facilities for non-repudiation.

Complexity of services and requirements

Some MMS services are quite complex and should be considered advanced functions. Devices used in very simple
applications often will not require such advanced functions, and hence will not support such MMS services.

Keywords

Application Interworking
Application Layer Protocol
Information Processing Systems
Manufacturing Communications Network
Manufacturing Message Specification
Numerical Control System
Open Systems Interconnection

OSI Reference Model
Process Control System
Programmable Controller
Programmable Device
Robotics Control System
Virtual Manufacturing Device

General

This part of ISO 9506 is one of a set of International Standards developed to facilitate the interconnection of
information processing systems. It is positioned within the application layer of the Open Systems Interconnection
Environment as an Application Service Element (ASE) with respect to other related standards by the Basic
Reference Model for Open Systems Interconnection (ISO 7498).

The aim of Open Systems Interconnection is to allow, with a minimum of technical agreement outside the
interconnection standards, the interconnection of information processing systems:

a) from different manufacturers;

b) under different managements;

c) of different levels of complexity;

d) of different ages.

Purpose

The purpose of this part of ISO 9506 is to define the services provided by the Manufacturing Message
Specification. The Services specified in this part of ISO 9506 are realized by the Manufacturing Message

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

xiii© ISO 2002 – All rights reserved

Specification Protocol specified in ISO 9506-2, making use of services available from the underlying
communication system. Although using the model in ISO 7498, this International Standard is written to be
independent of the exact form of the communication system insofar as possible. This International Standard does
this by describing its support requirements as a set of abstract services present in a variety of communication
environments. Realization of these abstract services in an OSI environment is described in Annex A.

This part of ISO 9506 is concerned, in particular, with the communication and interworking of programmable
manufacturing devices. By using this standard together with other standards positioned within the OSI Reference
Model, otherwise incompatible systems may work together in any combination.

ISO 9506-2 specifies the protocol that supports the Manufacturing Message Specification.

Edition

This part of ISO 9506 differs from the first edition of ISO 9506-1 by correcting several errors in the ASN.1 type
definitions and modelling structures. It also corrects several typographical errors in that document.

This part of ISO 9506 differs from ISO/IEC 9506-1:1990 in the following ways.

a) The informal object modelling used in ISO/IEC 9506-1 has been replaced by the use of the modelling
techniques present in ASN.1, ISO/IEC 8824-2. Hence, this part of ISO 9506 defines an ASN.1 module,
MMS-Object-Module-1, that contains the object models on which the service procedures are based.

b) The material in ISO/IEC TR 13345 that specifies subsets of protocol for MMS has been used in this part of
ISO 9506 to specify options within the object models. The material in ISO/IEC TR 13345 has been
modified slightly to allow for use of the PER encoding rules, ISO/IEC 8825-2.

c) All the material of Amendments 1 and 2 have been incorporated into the document, as well as the
Technical Corrigenda.

d) The services and protocol present in the Companion Standards already published, ISO/IEC 9506-3,
ISO/IEC 9506-4, and ISO/IEC 9506-6, have been incorporated into the base standard, and new parameter
CBBs have been added to the Initiate procedure to indicate their presence. The concept of Companion
Standard has been simplified to a document that makes explicit the relationship between the abstract
models in MMS and the requirements of the application field that is the subject of the Companion
Standard.

As a result of this incorporation, the need for separate abstract syntaxes for each of the Companion
Standards has been removed. All Companion Standards can now operate in the single abstract syntax of
the base standard, although using other abstract syntaxes remains a possibility for backward compatibility.

e) The communication requirements of MMS have been generalized so that MMS is described with respect to
an abstract set of services needed for its support. The relation between this abstract set of services and the
services provided by the suite of OSI communication protocols is specified in an annex. This opens the
possibility of having MMS operating correctly over alternate communication systems (such as reduced
stack implementations) as long as the equivalent of these abstract services is provided.

f) The restrictions on the characters that can be used as an Identifier have been relaxed to allow an Identifier
to begin with a numeric character, and by extension, to consist solely of numeric characters.

g) Many (but not all) occurrences of VisibleString have been replaced by a new production MMSString that
provides the option of using an arbitrary string of characters taken from ISO 10646. Similarly, these more
general strings may also be used as Identifiers. A new parameter CBB has been added to provide for
negotiation of the use of these more general strings.

h) A new service, ReconfigureProgramInvocation, has been introduced into the clause on Program Invocation
management. This service provides a technique of dynamically changing the constituent Domains of a
running Program Invocation.

i) A new field has been added to the object model of the Named Variable and Named Type. This field may
be used to describe the semantics associated with the Named Variable or Named Type. The field is either
predefined or has its value established as the name of the Named Type used to construct it in the
DefineNamedVariable or DefineNamedType service. This field can be reported with the

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

xiv © ISO 2002 – All rights reserved

GetVariableAccessAttributes or GetNamedTypeAttributes service if a parameter CBB appropriate to this
field has been negotiated.

j) The material of the document has been reorganized to provide shorter clauses.

k) The Real Data type has been removed from the document.

l) The Scattered Access has been removed from the base document and placed in an informative annex.

m) In accordance with the recommendations in ISO/IEC 8824-1, all occurrences of EXTERNAL in the
protocol have been replaced with CHOICE { EXTERNAL, EMBEDDED PDV }.

Protocol

Because of the use of the ASN.1 object modelling technique, the protocol now exists in two separate modules, one
that is part of the object model contained in this part of ISO 9506, and a second module defined in ISO 9506-2 that
describes the content and structure of all valid PDUs. Despite the fact that the ASN.1 formulation appears different
in some cases, nevertheless the PDUs produced through application of the first edition of ISO/IEC 9506 are
identical with those produced by this edition. For this reason, this edition continues to be identified by the major
version number one. (The minor version number has been changed to reflect all the new additions to the
document.)

There are exceptions to this statement that should be noted.

a) Syntactic extensions defined by the companion standards are now identified by new parameter CBBs
instead of a separate abstract syntax. Therefore, for any use of MMS involving companion standard
facilities, there is a change in the Initiate PDU. However, if the companion standard facilities are not used,
the Initiate PDU remains the same as that defined by the first edition.

b) Some small changes have been made to the tagging in the ChangeAccessControl service (part of
Amendment 2) to bring it into alignment with corresponding protocol in the GetNameList and Rename
services.

c) Encoding of the PDUs using PER (ISO/IEC 8825-2) may not be completely compatible with PDUs
generated by the first edition of ISO/IEC 9506:1990; this is because replacement of a type by a CHOICE
containing that type will result in a different encoding using PER; BER encoding for these two situations is
identical. Thus, if the PDUs contain any elements that are EXTERNAL, according to item m) above, they
will be replaced by a CHOICE resulting in a different PER encoding.

ASN.1 Modules

The ASN.1 modules defined in ISO 9506 may be obtained from the SC 4 Secretariat in computer readable format.
The modules are available in two forms: as published and with the IF - ELSE - ENDIF brackets removed.

To obtain these files use the Internet location: <http://forums.nema.org:8080/~iso_tc184_sc5>.

FINAL DRAFT / PROJET FINAL

© ISO 2002 – All rights reserved 1

INTERNATIONAL STANDARD ISO 9506-1:2002 (E)

1 Scope

The Manufacturing Message Specification is an application layer standard designed to support messaging
communications to and from programmable devices in a Computer Integrated Manufacturing (CIM) environment.
This environment is referred to in ISO 9506 as the manufacturing environment. This part of ISO 9506 does not
specify a complete set of services for remote programming of devices, although provision of such a set of services
may be the subject of future standardization efforts.

This part of ISO 9506 defines the Manufacturing Message Specification within the OSI application layer in terms
of:

a) an abstract model defining the interaction between users of the service;

b) the externally visible functionality of implementations conforming to ISO 9506, in the form of procedural
requirements associated with the execution of service requests;

c) the primitive actions and events of the service;

d) the parameter data associated with each primitive action and event;

e) the relationship between, and the valid sequences of, these actions and events.

The service defined in this part of ISO 9506 is that which is provided by the Manufacturing Message Specification
protocol. The service may be used by other application layer service elements or by other elements of the
application process.

This part of ISO 9506 does not specify individual implementations or products, nor does it constrain the
implementation of entities and interfaces within a computer system. This part of ISO 9506 specifies the externally
visible functionality of implementations together with conformance requirements for such functionality.

2 Normative references

ISO/IEC 646:1991, Information technology - ISO 7-bit coded character set for information interchange

ISO/IEC 7498-1:1994, Information technology - Open Systems Interconnection - Basic Reference Model: The
Basic Model

ISO 7498-2:1989, Information processing systems - Open Systems Interconnection - Basic Reference Model:
Security Architecture

ISO 7498-3:1997, Information technology - Open Systems Interconnection - Basic Reference Model:
Naming and addressing

Industrial automation systems — Manufacturing Message
Specification —
Part 1:
Service definition

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

 1) To be published.

© ISO 2002 – All rights reserved2

ISO 8571 (all parts), Information processing systems - Open Systems Interconnection - File Transfer, Access
and Management

ISO/IEC 8649:1996, Information technology - Open Systems Interconnection - Service definition for the
Association Control Service Element

ISO/IEC 8650-1:1996, Information technology - Open Systems Interconnection - Connection-oriented protocol
for the Association Control Service Element: Protocol specification

ISO 8822:1994, Information technology - Open Systems Interconnection - Presentation service
definition

ISO/IEC 8824-1:1998, Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic
notation

ISO/IEC 8824-2:1998, Information technology - Abstract Syntax Notation One (ASN.1): Information object
specification

ISO/IEC 8825-1:1998, Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)

ISO/IEC 8825-2:1998, Information technology - ASN.1 encoding rules: Specification of Packed Encoding Rules
(PER)

ISO 9506-21), Industrial automation systems - Manufacturing Message Specification - Part 2: Protocol
specification

ISO/IEC 9545:1994, Information technology - Open Systems Interconnection - Application Layer structure

ISO/IEC 10646-1:2000, Information technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1:
Architecture and Basic Multilingual Plane

ISO/IEC 10731:1994, Information technology - Open Systems Interconnection - Basic Reference Model -
Conventions for the definition of OSI Services

ANSI/IEEE 754:1985, IEEE Standard for Binary Floating-Point Arithmetic

3 Terms and definitions

NOTE The definitions contained in this clause make use of abbreviations defined in clause 4.

For the purposes of this document, the following terms and definitions apply.

3.1 Reference Model definitions

This part of ISO 9506 is based on the concepts developed in the Basic Reference Model for Open Systems
Interconnection (ISO 7498), and makes use of the following terms defined in that International Standard:

a) application-entity;

b) application-process;

c) application service element;

d) open system;

e) (N)-protocol;

f) (N)-protocol-data-unit;

g) (N)-service-access-point;

h) (N)-layer;

i) system;

j) (N)-user-data.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 3

3.2 Service Convention definitions

This part of ISO 9506 makes use of the following terms defined in the Conventions for the definition of OSI
Services (ISO/IEC 10731) as they apply to the Manufacturing Message Specification:

a) confirm;

b) indication;

c) primitive;

d) request;

e) response;

f) service primitive;

g) service provider;

h) service user.

3.3 Abstract Syntax Notation definitions

This part of ISO 9506 makes use of the following terms defined in the Abstract Syntax Notation One (ASN.1)
Specification (ISO/IEC 8824-1):

a) value;

b) type;

c) simple type;

d) structure type;

e) component type;

f) tag;

g) tagging;

h) type (or value) reference name;

i) character string type;

j) boolean type;

k) true;

l) false;

m) integer type;

n) bitstring type;

o) octetstring type;

p) null type;

q) sequence type;

r) sequence-of type;

s) tagged type;

t) choice type;

u) selection type;

v) object identifier type;

w) module;

x) production;

y) ASN.1 encoding rules;

z) ASN.1 character set;

aa) external type.

3.4 Other definitions

For the purposes of this document, the following terms and definitions also apply.

3.4.1
AA-specific (Application Association specific):
an adjective used to describe an object whose name has a scope that is a single application association (i.e. the
name may be referenced only on the application association with respect to which the object was defined).

3.4.2
attribute:
a data element, having a defined meaning, together with a statement of the set of possible values it may take.

3.4.3
Called MMS-user:
the MMS-user that issues the Initiate.response service primitive.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved4

3.4.4
Calling MMS-user:
the MMS-user that issues the Initiate.request service primitive.

3.4.5
Client:
the peer communicating entity that makes use of the VMD for some particular purpose via a service request
instance.

3.4.6
conformance building block (CBB):
an atomic unit used to describe MMS conformance requirements.

3.4.7
data:
any representation to which meaning is or might be assigned (e.g. characters).

3.4.8
domain:
an abstract object that represents a subset of the capabilities of a VMD that is used for a specific purpose.

3.4.9
Domain-specific:
an adjective used to describe an object whose name has a scope that is a single Domain (i.e. the name can be
referenced over all application associations established with the VMD that may reference this Domain).

3.4.10
download:
the process of transferring the content of a Domain, including any subordinate objects, via load data to a remote
user.

3.4.11
event management:
the management of event conditions, event actions, event enrollments, and event condition lists.

3.4.12
file:
an unambiguously named collection of information having a common set of attributes.

3.4.13
file operation:
the transfer of files between open systems, the inspection, modification or replacement of part of a file's content, or
the management of a file and its attributes.

3.4.14
filestore:
an organized collection of files, including their attributes and names, residing at a particular open system.

3.4.15
information:
the combination of data and the meaning that it conveys.

3.4.16
journal:
a set of recorded, time-tagged event transitions, variable data, and/or comments, that may be logically ordered
during retrieval.

3.4.17
local matter:
a decision made by a system concerning its behaviour in the Manufacturing Message Specification that is not
subject to the requirements of ISO 9506.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 5

3.4.18
Manufacturing Message Protocol Machine (MMPM):
an abstract machine that carries out the procedures specified in this part of ISO 9506.

3.4.19
MMS-environment:
a specification of the service elements of MMS and semantics of communication to be used during the lifetime of
an application association.

3.4.20
MMS-provider:
that part of the application entity that conceptually provides the MMS service through the exchange of MMS PDUs.

3.4.21
MMS-user:
that part of the application process that conceptually invokes the Manufacturing Message Specification.

3.4.22
monitored event:
a detected change in the state of an event condition.

3.4.23
network-triggered event:
an event that occurs due to an explicit stimulus by a client.

3.4.24
operator station:
an abstract object representing equipment associated with a VMD that provides for input/output interaction with an
operator.

3.4.25
predefined object:
an object that is instantiated through the use of some mechanism other than an MMS service.

3.4.26
Program Invocation:
an abstract object representing a dynamic element that most closely corresponds to an execution thread in a multi-
tasking environment, composed of a set of Domains.

3.4.27
Receiving MMPM:
the MMPM that receives an MMS PDU.

3.4.28
Receiving MMS-user:
the MMS-user that receives an indication or confirmation service primitive.

3.4.29
Requesting MMS-user:
the MMS-user that issues the request service primitive for a service.

3.4.30
Responding MMS-user:
the MMS-user that issues the response service primitive for a service.

3.4.31
semaphore:
a conceptual lock associated with a logical or physical resource that permits access to that resource only by an
owner of the lock.

3.4.32
semaphore management:
the control of semaphores.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved6

3.4.33
Sending MMPM:
the MMPM that sends an MMS PDU.

3.4.34
Sending MMS-user:
the MMS-user that issues a request or response service primitive.

3.4.35
Server:
the peer communicating entity that behaves as an agent for a VMD for a particular service request instance.

3.4.36
standardized object:
an object instantiation whose definition is provided in this part of ISO 9506 or in an MMS Companion Standard.

3.4.37
upload:
the process of transferring the content of a Domain, including any subordinate objects, via load data from a remote
user, in such a manner as to allow subsequent download.

3.4.38
variable:
one or more data elements that are referred to together by a single name or description.

3.4.39
variable access:
the inspection or modification of variables or components of variables defined at a VMD.

3.4.40
Virtual Manufacturing Device (VMD):
an abstract representation of a specific set of resources and functionality at a real manufacturing device and a
mapping of this abstract representation to the physical and functional aspects of the real manufacturing device.

3.4.41
VMD-specific:
an adjective used to describe an object whose name has a scope that is a single VMD (i.e. the name may be
referenced by all application associations established with the VMD).

4 Abbreviations

AA application association
ACSE Association Control Service Element
AE application entity
AP application process
ASE application service element
ASN.1 Abstract Syntax Notation One
CBB conformance building block
CIS Configuration and Initialization Statement
FRSM file read state machine
FTAM File Transfer, Access and Management
MMPM Manufacturing Message Protocol Machine
MMS Manufacturing Message Specification
NC Numerical Control
OSI Open Systems Interconnection
PC Programmable Controller
PDU protocol data unit
PSAP presentation service access point
SAP service access point
SDU service data unit
ULSM upload state machine
VMD Virtual Manufacturing Device
VT Virtual Terminal

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 7

5 Conventions

5.1 Base of Numeric Values

This part of ISO 9506 uses a decimal representation for all numeric values unless otherwise noted.

5.2 Object modelling

This part of ISO 9506 makes use of a technique of abstract object modelling in order to describe fully the MMS
device model and the MMS service procedures. In this modelling technique, abstract objects, the characteristics of
such objects, and operations on those objects are described. The objects defined are abstract and aid in the
understanding of the intent of MMS service procedures and their effects. In implementing MMS, a real system
maps the concepts described in the model to the real device. Hence, as viewed externally, a device that conforms to
this part of ISO 9506 exhibits the characteristics described in the object modelling technique, but the mechanisms
for realization of this view are not defined by this part of ISO 9506.

MMS defines several classes of objects. Each object is an instance of a class; a class exhibits certain characteristics
and may be affected by certain MMS services and operations. Each class is given a name, by which it may be
referenced.

Each class is characterized by a number of attribute types that serve to describe some externally visible feature(s) of
all objects of this class. Each instance of a class (object) has the same set of attribute types, but has its own set of
attribute values. The values of these attributes are defined by this part of ISO 9506 or may be established by MMS
services; hence a change in the device may be modelled by a change in one or more attribute values of an object (or
objects).

Each object must be uniquely identified among all instances of the same class. For this purpose, one or more of the
object's attribute values, as a combination, must be unique. (For example, many objects have an attribute type
called "object name", which is different for each object of the same class.) In MMS, each attribute that is a part of
this combination of attributes that make the object unique is identified as a "key attribute".

Some attributes of the objects only need occur if certain parameters are negotiated during association establishment.
These parameters, exchanged during the association establishment procedure, are called conformance building
blocks (CBB). While the basic object model remains unaffected, the exact details of the object model in use on any
instance of communication depends on which of these parameters have been negotiated during association
establishment.

Finally, some objects contain attributes that are conditional, in the sense that they are relevant to the object if and
only if certain conditions (other than the conformance building blocks) hold true. MMS expresses such attributes
through the use of a "constraint". Attributes that are subject to a constraint are considered to be object attributes for
an object if and only if the corresponding constraint is satisfied for that object.

This International Standard makes use of the object modelling facilities of ASN.1, ISO/IEC 8824-2. The type
language specified in ISO/IEC 8824-1 is used for describing the abstract structure of a protocol, that is, the data
present in a message. It does so by providing a notation for data values and data types. A data value is an instance
of a data type, and a data type can be thought of as a name for the set of possible data values for that type.

ISO/IEC 8824-2 extends this paradigm to introduce the concept of object and class. An object is an instance of
class, and a class is defined by an abstract structure of a set of attributes, called fields. Each field is composed of
two elements, a field identifier, and a field type. For the purposes of MMS models, the field can be restricted to one
of four possible choices:

a) the field is a data value (an instance of a data type);

b) the field is a data value set (a subtype of a data type);

c) the field is an object (an instance of a class);

d) the field is an object set (a subset of a class).

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved8

The field identifier always begins with an ampersand (&) followed by a name. The use of capital and lower case
letters serve to specify which choice is being used. The following example illustrates the four possibilities:

NewObject ::= CLASS {
&invokeID INTEGER,
&Capabilities MMSString,
&selected-PI PROGRAM-INVOCATION,
&AbstractSyntaxes ABSTRACT-SYNTAX }

a) &invokeID. The field identifier begins with a lower case letter (the 'i' following the ampersand) and the
field choice is the name of a data type, INTEGER. This field is a simple data value field.

b) &Capabilities. The field identifier begins with an upper case letter and the field choice is the name of a data
type. This field is a value set, one or more values from a specific type.

c) &selected-PI. The field choice identifies an object class, a PROGRAM-INVOCATION. By convention, all
object classes are named using capital letters. The field identifier itself begins with a lower case letter
indicating that the field is a single object from that class.

d) &AbstractSyntaxes. The field identifier begins with an upper case letter and the field choice identifies an
object class. This field is an object set composed of one or more instances of the object class ABSTRACT-
SYNTAX. (ABSTRACT-SYNTAX is an object class defined in an annex to ISO/IEC 8824-2.)

NOTE ISO/IEC 8824-2 allows other specifications for fields, but these are the only ones that are used in MMS models.

5.2.1 References to other objects

Some objects contain attributes that identify other objects. In the example above, &selected-PI and
&AbstractSyntaxes identify other objects. Such attributes, called reference attributes, provide a mechanism to
create a linkage from one object to another. The method of representing such attributes in a real system is a local
matter, and such attributes may not be directly modified or examined. Many MMS services provide the capability
to determine the identity of an object referenced by such a linkage, however, through the use of such an indirect
reference.

In some cases, references to other objects is indicated by a field that contains a value of a keyword of the referenced
object (in most cases, an Identifier or ObjectName). The object so referenced will be indicated in a comment.

In certain cases, reference attributes may be missing from the object model. This possibility, an empty set of values
or objects, is indicated in the object model by the keyword OPTIONAL following the field choice.

5.2.2 Field Types

Types for fields defined in this part ISO 9506 make use of types defined in ISO/IEC 8824-1, clause 3.
Additionally, complex types are used that are constructed from the ISO/IEC 8824-1 primitive types and named to
allow them to be referenced.

5.3 Specialisation of MMS

5.3.1 Conformance Building Blocks (CBB)

MMS prescribes a procedure, used at the time of association establishment, in which sets of parameters are
exchanged for the purpose of identifying the services that may be performed during the association. The effect of
identifying these parameters is such that the protocol available to be used during the association is limited to a
proper subset of the entire protocol specified in ISO 9506-2. This same procedure affects the attribute structure of
the object model operative for that instance of communication. The parameters exchanged are of two types:

a) those that are announced by the two MMS users, the service conformance building blocks,

b) those that are negotiated between the two MMS-users, the parameter conformance building blocks. These
CBBs are proposed by the Calling MMS-user and either accepted or rejected by the Called MMS-user.
Negotiation always works to reduce the set proposed, never to augment it.

Declaration of support of any service CBB requires inclusion of the protocol related to that service in the protocol
set to be used on that association. Support of a parameter CBB usually results in the inclusion of some optional
fields within the protocol of some service request or response. However, in some cases, support of a parameter

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 9

CBB implies support of one or more service CBBs, regardless of whether or not support for those service CBBs has
been declared. The full effect of these CBBs on the protocol specification is given in ISO 9506-2. Here we note
the effect of these CBBs on the object model.

5.3.2 Notation

The notation introduced has the form of a preprocessor language in which ASN.1 is embedded. It is very similar in
concept to the macro preprocessor for the C language. There are three commands used in this notation:

- IF (<list of arguments>)

- ELSE

- ENDIF.

The IF command requires an argument list enclosed in parentheses; the arguments are the names of the
conformance building blocks, either service or parameter. One or more such arguments must appear. If there is
more than one argument, the arguments are separated by one or more spaces. The argument is treated as a boolean
variable that has the value true if the corresponding service or parameter building block is supported as a result of
the MMS Initiate exchange. If there is one argument, the lines following the IF statement up to the ELSE statement
or to the matching ENDIF statement (if no ELSE statement appears) are to be included in the resulting ASN.1
definition if and only if the conformance building block so named in supported. If there is more than one argument,
the lines following the IF statement are to be included if any of the conformance building blocks in the argument
list is supported. (This can be thought of as a 'logical OR' function of the conformance building blocks.)

IF statements may be nested to any depth; the effect of

IF (x)

IF (y)

is to include the lines following these commands if and only if both x and y are true, that is, if conformance block x
and conformance block y are both included. (This can be thought of as a 'logical AND' function of the
conformance building blocks.)

The ELSE statement may appear to allow ASN.1 statements to be included if a conformance building block is not
true. Its use is similar to the normal use of ELSE in programming languages.

The ENDIF statement is used to end the scope of an IF statement or ELSE statement. Each IF statement must have
a matching ENDIF statement

5.3.3 Constraints

Constraints (other than occurrences of CBBs) are expressed in this object model by use of the ASN.1 construct
OPTIONAL together with a comment that indicates the conditions under which this attribute is or is not included in
the object model.

5.4 Service Parameter Description

This part of ISO 9506 uses a tabular format to describe the component parameters of the MMS service primitives.
This same format is used to describe several complex parameters that are used in more than one service. Each table
consists of up to six columns, containing the name of the service parameter, a column each for the request ("Req"),
indication ("Ind"), response ("Rsp"), and confirm ("Cnf") primitives, and a column for conformance building block
specification ("CBB"). The "Rsp" and "Cnf" columns are absent if the service is not a confirmed service. For
parameter specifications, the Req and Rsp may be combined into a single column as may the Ind and Cnf.

5.4.1 Service Table Structure

For those tables that require support of particular parameter conformance building blocks, the required
conformance building blocks are enumerated on the first line in the table. In the remainder of each table, one
parameter (or part of it) is listed on each horizontal line. Under the appropriate service primitive columns, a code is
used to specify the type of usage of the parameter on the primitive specified in the vertical column:

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved10

M - parameter is mandatory for the primitive
U - parameter is a user option, and may or may not be provided

depending on dynamic usage by the MMS-user
C - parameter is conditional upon other parameters or the

environment of the MMS-user
S - parameter is a selection from a collection of two or more

possible parameters. The parameters that make up this
collection are indicated in the table as follows:

a) each parameter in the collection is specified with the code "S";

b) the name of each parameter in the collection is at the same indentation from
the beginning of the parameter column in the table;

c) Either
1) each parameter is at the leftmost (outer) indentation in the table; or
2) each parameter is part of the same parameter group. A parameter group is

a collection of parameters where each group member has a common parent
parameter. The parent parameter for any group member is the first
parameter above the member that is not indented as far as that member.
In the example below, ParameterA and ParameterB form a parameter group:

ParameterX
ParameterA
ParameterB

ParameterY
ParameterC

Informally, for parameters involved in a selection, the indentation in the
services tables signifies which parameters are involved in a selection. All
parameters at the same level of indentation that are under a common "higher
level" parameter are a part of the same selection.

The code "(=)" following one of the codes M, U, C or S indicates that the parameter is semantically equivalent to
the parameter in the service primitive to its immediate left in the table. (For instance, an "M(=)" code in the
indication service primitive column and an "M" in the request service primitive column means that the parameter in
the indication primitive is semantically equivalent to that in the request primitive.)

Some parameters may contain subparameters. Subparameters are indicated by labelling of the parameter as M, U or
C, and indenting all subparameters under the parameter. Presence of subparameters is always dependent on
presence of the parameter that they appear under (for example, an optional parameter may have subparameters; if
the parameter is not supplied, no subparameters may be supplied).

The CBB column is used to indicate that usage of the parameter is dependent on support of conformance building
blocks, other than that containing the service. If no entry exists in the CBB column, there is no dependency on
other conformance building blocks. If an entry does exist, the parameter is available (and permitted for use by this
International Standard) if and only if the named conformance building block is supported and negotiated for use.

Some service parameters are named using a "List Of ..." convention. Unless otherwise noted, all parameters whose
names begin with "List Of ..." specify a list of zero or more of the item specified after the "List Of" keyword phrase.
(This type of parameter corresponds with the sequence-of ASN.1 type in ISO 9506-2.)

The descriptions of parameters in this part of ISO 9506 make reference to types, in order to describe the allowable
values for such parameters. The types referenced may either be types defined in ISO/IEC 8824-1 or may be defined
in ISO 9506-2.

5.4.2 Collating Sequences

Several object models contain fields that are themselves sets of other objects (more properly sets of references to
other objects). When such sets are to be reported as parameters of a service response, the order of the elements
shall be based on the &name field of the objects. The syntax of this &name field is defined by the Identifier type in
clause 7.5.2 of ISO 9506-2. The Identifier type lists the permissible characters of the &name field, and gives an
ordering of these characters. This ordering shall be used to define the collating sequence of the set of objects so
named.

If objects of different name scopes are to be combined on a composite list, the objects of AA-specific scope shall
appear first grouped by the application association, the objects of VMD specific scope shall appear next, and the
objects of Domain scope shall appear last grouped by Domain. The ordering of the Domains is as specified in this
clause; the ordering of the application associations is a local matter.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 11

Some service parameters refer to arbitrary sequences of character strings (MMSString); in the cases in which a
collating sequence is needed for these parameters, the character strings should be ordered using the prescriptions of
Clause 36 of ISO/IEC 8824-1.

5.5 Invocation Identifier on Service Primitives

For services identified in the ConfirmedServiceRequest production in clause 7.1 of ISO 9506-2, each MMS service
primitive contains an "Invoke ID" parameter, which is mandatory in the request, indication, response, and confirm
primitives. The value in the indication, response, and confirm primitives is semantically equivalent to that in the
request primitive. This parameter serves to identify unambiguously the service invocation from an MMS-user on
an application association. This parameter is not explicitly shown in the service primitive tables, nor is it explained
separately for each service.

5.6 List Of Modifier on Service Primitives

Every confirmed MMS service contains a "List Of Modifier" parameter, which is a user option in the request and
indication primitives. The value in the indication primitive is semantically equivalent to that in the request
primitive. This parameter serves to specify a list of one or more service state machine modifiers which add a
condition that must be satisfied for the execution of the service request to begin. This parameter is not explicitly
shown in the service primitive tables, nor is it explained separately for each service.

MMS defines two modifiers: the AttachToSemaphore modifier and the AttachToEventCondition modifier, which
are described in clauses 16 and 18, respectively.

The effect of the modifier on the Transaction state machine for execution of a confirmed MMS service is described
in clause 7.

5.7 Addressing in MMS

This International Standard does not provide the means for naming and addressing of a peer MMS-user or peer
Manufacturing Message Protocol Machine (MMPM). It makes use of the addressing and naming facilities in the
underlying communication system. Specifics about the use of naming and addressing within OSI may be found in
Annex A.

5.8 Service Conventions

This part of ISO 9506 uses the descriptive conventions contained in the Conventions for the definition of OSI
Services (ISO/IEC 10731). The Conventions for the definition of OSI Services define the interactions between the
MMS-user and the MMS-provider. Information is passed between the MMS-user and the MMS-provider by
service primitives, which may convey parameters. The following apply to the use of this model:

a) ISO/IEC 10731 defines a model for the service provided by a layer of the OSI Reference Model. The MMS
service does not correspond to such a layer (it describes a part of the application layer) but the model used is
identical in all other respects;

b) at any instant in time, an application entity has multiple service requests outstanding, each proceeding
independently of the others.

NOTE It should be noted that the MMS-user/MMS-provider distinction is an abstraction, and may not necessarily correspond
to the realization of MMS in any particular system. Clauses 6 and 7 provide further details on the usage of abstract
models.

5.9 Calling and Called MMS-user

This part of ISO 9506 makes use of the terms Calling and Called MMS-users. The Calling MMS-user is the MMS-
user that issues the Initiate.request service primitive. The Called MMS-user is the MMS-user that issues the
Initiate.response service primitive.

NOTE The use of the term "called" in MMS is not the same as the general usage of the term in OSI. The MMS usage of the
term "called" corresponds to the OSI usage of the term "responding". This distinction has been introduced in order to
avoid confusion with the Requesting/Responding MMS-user definition given below.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved12

5.10 Sending and Receiving MMS-user and MMPM

This part of ISO 9506 makes use of the terms Sending and Receiving MMS-users. The Sending MMS-user is the
MMS-user that issues a request or response service primitive. The Receiving MMS-user is the MMS-user that
receives an indication or confirmation service primitive.

NOTE It is important to note that, in the course of completion of a confirmed MMS service, both MMS-users will be senders
and receivers at some time. The first MMS-user sends the request and receives the confirmation, while the second
MMS-user receives the indication and sends the response.

This part of ISO 9506 makes use of the terms Sending and Receiving MMPMs. The Sending MMPM is the
MMPM that sends an MMS PDU. The Receiving MMPM is the MMPM that receives an MMS PDU.

5.11 Requesting and Responding MMS-user

This part of ISO 9506 makes use of the terms Requesting and Responding MMS-users. The Requesting MMS-user
is the MMS-user that issues the request service primitive for a service, while the Responding MMS-user is the
MMS-user that issues the response service primitive for a service.

NOTE It is important to note that the use of the term Responding MMS-user differs from the use of the term Responding
entity in ACSE and other Standards. In those Standards, the term is used to reference the entity that responds to a
connection request.

5.12 Client and Server of a Service

This part of ISO 9506 makes use of the terms Client and Server in order to describe the model of the MMS VMD
(The VMD is described in clause 7). The Server is defined as the peer communicating entity that behaves as a
VMD for a particular service request instance. The Client is the peer communicating entity that makes use of the
VMD for some particular purpose via a service request instance. The VMD model is primarily useful in describing
the actions of the Server, and thus in describing the commands and responses that a Client may use. A real end
system may adopt the Client role, or the Server role, or both during the lifetime of an application association. Use
of MMS in the OSI environment is further described in clause A.

Figure 1 depicts the relationships of the client and server of a service, the requesting and responding MMS-user,
and the sending and receiving MMS-user and MMPM.

Client Server

Requesting Responding

Request
PDU

Response
PDU

Sending Receiving

SendingReceiving

VMD

DOM

DOM

VAR

VAR

Figure 1 - Relationships of Client and Server, Requesting and Responding MMS-user, and Sending
and Receiving MMPM

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 13

5.13 Relationship of Object Models to Service Tables

Throughout the text, the term "parameter" will be used to refer to components of a service primitive, and the term
"attribute" or "field value" will refer to a component of an object model. In many cases, there is a one to one
correspondence between a parameter in a service primitive and an attribute in an object model. However, in other
cases the parameter is derived from one or more object attributes. When referring to a distinguished value of an
attribute in an object model, a distinctive type font will be used. When referring to a distinguished value
of a parameter of a service primitive, the value will be in upper case, e.g. UNDEFINED.

6 MMS in the OSI Environment

This clause describes the relationship between MMS and the communication environment that supports it.
Although this International Standard is designed to be used in a variety of communication environments, it uses the
model and terms of the OSI model (ISO 7498 and ISO/IEC 10731) to describe its environment and the elements of
the services needed to support it. Specific use of OSI communications is defined in annex A. Clause 7 describes
the specific model of the MMS device within this environment.

Additional information to supplement this clause may be found in the OSI Reference Model (ISO 7498-1 and ISO
7498-3), the Conventions for the definition of OSI Services (ISO/TR 8509), and the OSI Application Layer
Structure (ISO/IEC 9545). References may be found in clause 2. This information may be particularly useful in
understanding the relationship between AEs, APs, and their respective invocations.

The development of standards for the interconnection of manufacturing monitoring and control devices is assisted
by the use of abstract models. To specify the externally perceived behaviour of interconnected manufacturing
devices, each manufacturing device is represented by a functionally equivalent abstract model of the device called a
Virtual Manufacturing Device (VMD) (see clause 7). The VMD model, along with the extensions to this model
which are provided by clauses 7 to 23, describes the externally visible aspects of these devices.

In order to accomplish this, however, it is necessary to describe both the internal and external behaviour of these
manufacturing devices. Only the external behaviour of the devices is retained as the standard of behaviour of a
VMD. The description of the internal behaviour of such devices is provided in the model only to support the
definition of the externally perceived aspects. Any manufacturing device that behaves externally as a VMD can be
considered to be in conformance with ISO 9506.

NOTE The reader not familiar with the technique of abstract modelling is cautioned that the concepts introduced in the
description of the VMD constitute an abstraction despite a similar appearance to concepts commonly found in real
devices. Therefore, the VMD model is not a specification for an implementation.

6.1 Information Processing Tasks and Real Systems

The control and monitoring of a manufacturing process is a distributed information processing task. In order to
carry out this task successfully, inter-operation of a number of real open systems is required. In OSI, a real open
system is defined as a set of computers and associated software (including peripherals, terminals, human operators,
physical processes, etc.) that follow the OSI Reference model.

In OSI, the inter-operation of real open systems is modelled in terms of the interactions between Application
Processes (APs) in these systems. The distributed task of control and monitoring of a manufacturing process
requires the co-operation of two or more Application Processes.

6.2 Application Processes

An Application Process (AP) is an element within a real open system that takes part in the execution of one or more
information processing tasks. It is an abstract representation of those aspects of a real open system that are specific
to the performance of those tasks. APs generally have requirements above and beyond any requirements to
communicate with other APs. In the manufacturing environment, an AP represents a real system participating in
the overall control/monitoring distributed task.

6.3 Interaction of Application Processes

Several requirements must be met in order to allow co-operative operation of APs. First, they must share sufficient
information to enable them to interact and carry out processing functions in a compatible and co-operative manner.
In the manufacturing environment, the term "universe of discourse" is used to name a model of those aspects of the

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved14

"world" that are pertinent to the objectives of a manufacturing control and monitoring task of an AP. In order to
allow successful interworking between APs, they must share a universe of discourse (i.e. they must have a common
understanding of the manufacturing environment).

It is convenient to describe the common model of the manufacturing environment, or universe of discourse, in terms
of a set of abstract "objects". Examples of objects in the manufacturing environment include variables, programs,
and semaphores. The model describes the characteristics of objects and relationships between them. The
characteristics may include the properties of those objects (either static or dynamic), and these properties are
expressed as a set of rules and constraints about the behaviour of these objects within the model of the
manufacturing environment. An example of a property of an object is the characteristic of a program that it is either
running or stopped.

A universe of discourse can be described formally by a "conceptual schema". The conceptual schema for the
manufacturing universe of discourse is described by the models provided by MMS. The second requirement for
successful interworking of two APs is that they share a common model of the objects (such as variables, programs,
and semaphores) in the universe of discourse. In OSI, this is called a "shared conceptual schema". This
requirement is met in a manufacturing control and monitoring application through the sharing of the models in
MMS for the manufacturing universe of discourse.

When two APs co-operate, their behaviour is determined partly by these models (the shared conceptual schema)
and partly by their past interactions. The past interactions are modelled by the state of the objects in the universe of
discourse. As an example, the co-operative behaviour of two APs may be partly determined by the Program
Invocation model of MMS and partly by the state of Program Invocation objects in the APs. The shared
information about the state of objects is called an information base.

6.4 Interaction of Application Processes in OSI

The activity of a given AP in a specific information processing task is supported by an application-process-
invocation. At any time, an Application Process may have zero, one or more application-process-invocations.
While the Application Process describes a specific set of information processing functions in a particular real
system, the application-process-invocation (AP-invocation) describes an instance of the Application Process in a
real system for a particular occasion of information processing. (Hence, an AP may describe control of a robot arm
in a specific real system, while an AP-invocation describes the control of a robot arm in a specific real system on
some occasion of control for assembly of some particular part).

Thus, co-operation between APs for the performance of a given information processing task takes place through
interacting AP-invocations. When APs interact using communication capabilities, these communication
capabilities are in turn modelled by one or more Application Entities (AE). An AE is an active element in the
Application Layer of an open system, and it represents those parts of an Application Process involved in
communications. Each AE represents exactly one AP.

Like APs, the activity of a given AE is supported by an application-entity-invocation. An AE-invocation performs
the functions of an AE for a particular occasion of communication. At any time, an AP-invocation may be
represented by zero or more AE-invocations for each AE associated with the AP. Hence, the interactions of AP-
invocations for a particular occasion of communication is represented in OSI by a set of corresponding AE-
invocations.

Because an AE describes only part of the operation of an AP (namely, that involving communications), resources in
AP-invocations may exist beyond the lifetime of (and may be independent of) an AE-invocation.

NOTE The relationship between an AE and the VMD is defined in clause 7.

6.5 Structure of Application Entities

The AE represents a set of communication capabilities of an AP. These capabilities are defined by a set of
Application Service Elements (ASEs). An ASE is a coherent set of integrated functions that provides a capability
for communications for some particular purpose. MMS is modelled as an ASE for the purpose of communications
with manufacturing devices.

6.6 Addressing of Application Entities

The underlying communication system uses some system of addressing and naming to identify nodes on the
communication network and AE-invocations within each node. In the process of establishing an application
association to support the MMS environment, the MMS-user must have knowledge of the addressing conventions

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 15

used by the underlying communication. However, the specification of this addressing and naming conventions is
outside the scope of this International Standard.

While in the MMS environment, an MMS user may need to refer to some communication node and/or AE-
invocation other than the one with which the application association has been established. For this purpose this
International Standard makes use of an "Application Reference" to identify an AE in another system. This is in the
form of an ASN.1 type definition "ApplicationReference", appropriate to the underlying communication system.
For use of MMS in an OSI based communication system, ApplicationReference is defined in annex A.

6.7 Application Context

The application context identifies the set of application service elements, their options, rules for use of the service
elements, and their effects that are available on an application association. In the case of MMS, the application
context associated with MMS indicates that the rules and requirements associated with ISO 9506 are in effect when
the MMS application context is negotiated.

6.8 Presentation Context, Abstract Syntaxes, and Transfer Syntaxes

In OSI, there is an important distinction between the generic requirements of an application for the transfer of data
and how those requirements are met in terms of a specific representation of data values. The former aspect of data
description is referred to by the term "abstract syntax", while the latter aspect is referred to by the term "transfer
syntax".

Abstract syntaxes are intimately associated with application protocol standards. ISO 9506-2 defines an abstract
syntax matching its data transfer requirements. An abstract syntax can be viewed informally as describing the
generic structure of data. In MMS, the set of type definitions provided in ISO 9506-2 constitutes an abstract
syntax. The MMS abstract syntax may be supported by many different transfer syntaxes.

Transfer syntaxes are concerned with the way in which data is actually represented in terms of bit patterns during
transmission. A transfer syntax may have attributes that are not related to the abstract syntaxes that it can support,
but such attributes may be significant. For example, a transfer syntax may provide data compression or encryption.
Such attributes (and how well they meet the requirements of the device) may influence the choice of syntaxes
offered or selected for an instance of communication.

For the purpose of transferring data between MMS entities, it is necessary to identify the abstract syntax being used
(MMS) and a transfer syntax that is capable of representing data values that are generated using this abstract syntax.
A specific combination of an abstract syntax and a transfer syntax that is used for transfer of data is called a
presentation context.

Abstract Syntax Notation One (ASN.1) is an example of a tool for specification of syntaxes and associated
encoding rules. (The application of encoding rules to a particular abstract syntax may generate a transfer syntax.)
The ASN.1 Specification (ISO/IEC 8824) has been chosen to describe the MMS abstract syntax. One possible
transfer syntax for MMS is defined by the application of the ASN.1 Basic Encoding Rules (ISO/IEC 8825-1) to the
MMS abstract syntax, but others are possible. The only requirement on a transfer syntax to be used for MMS is
that it faithfully encode all of the elements of abstract syntax defined ISO 9506-2.

6.9 MMS requirements of the communication system

This International Standard requires that the underlying communication system provide the encoding mechanism
(transfer syntax) to support the transfer of data expressed in the abstract syntax defined in ISO 9506-2. This
International Standard requires the communication system to support full duplex, connection oriented peer to peer
communication. In addition, this International Standard requires the support of the following abstract services from
the communication system. The relationship of these services to OSI communication facilities is described in
annex A, and the use of these services by MMS services is described in clause 24 of ISO 9506-2.

6.9.1 M-ASSOCIATE

The M-ASSOCIATE service allows an MMS-user to establish an association with another MMS-user over the
communication system and to convey to the peer MMS-user a set of MMS specific parameters to be associated with
this instance of communication. This service requires a set of parameters most of which are specific to the
communication systems being employed. However, there are two parameters required of this service in support of
other MMS functions, the identity of the other MMS-user, and (optionally) a password or other authentication
parameter to be transmitted to the peer MMS-user. M-ASSOCIATE is a confirmed service. In addition to its other
functionality, M-ASSOCIATE allows one MMS-user to transmit some user data (the service parameters of the

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved16

MMS Initiate service) to its peer MMS-user. Upon completion of the service either (1) an association has been
established and the MMS environment has been created (positive result parameter), or (2) the association could not
be established (negative result parameter). Figure 2 shows the time sequence of service primitives for this service.

M-ASSOCIATE.req

M-ASSOCATE.ind

Communications
Provider

M-ASSOCIATE.rspM-ASSOCIATE.cnf

Calling MMS user Called MMS user

Figure 2 - M-ASSOCIATE service

Table 1 shows the parameters of the M-ASSOCIATE service.

 Parameter Req Ind Rsp Cnf

Argument
 Calling Application Reference
 Called Application Reference
 Other Communication Parameters
 Authentication Value
 User Data

Result
 Responding Application Reference
 Other Communication Parameters
 Authentication Value
 User Data

M
M
M
M
U
M

M
M(=)
M(=)

M
U(=)
M(=)

M
M
M
U
M

M(=)
M(=)

M
U(=)
M(=)

Table 1 - M-ASSOCIATE service

6.9.1.1 Argument

This parameter contains the parameters of the M-ASSOCIATE service of the Calling system.

6.9.1.1.1 Calling Application Reference

This parameter identifies the calling system uniquely within the communication system.

6.9.1.1.2 Called Application Reference

This parameter identifies the system with which the Calling system wishes to establish an association.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 17

6.9.1.1.3 Other Communication Parameters

This parameter is one or more parameters specific to the underlying communication system being used.

6.9.1.1.4 Authentication Value

This optional parameter may be included if the called system requires authentication to allow some services to be
performed. It is used to establish the right of the calling system to make use of those services.

6.9.1.1.5 User Data

This parameter contains the MMSPdu as formed by the Initiate service request (see clause 8).

6.9.1.2 Result

This parameter shall indicate whether the M-ASSOCIATE service request was accepted or rejected.

6.9.1.2.1 Responding Application Reference

This parameter identifies the system that is responding to the M-ASSOCIATE service request. It will normally be
identical to the Called Application Reference of the service request, but it need not be so.

6.9.1.2.2 Other Communication Parameters

This parameter is one or more parameters specific to the underlying communication system being used.

6.9.1.2.3 Authentication Value

This optional parameter may be included if the calling system requires authentication to allow some services to be
performed. It is used to establish the right of the called system to make use of those services.

6.9.1.2.4 User Data

This parameter contains the MMSPdu as formed by the Initiate service response, (see clause 8).

6.9.2 M-RELEASE

The M-RELEASE service allows an MMS-user to terminate an association in an orderly manner. M-RELEASE is
a confirmed service. In addition to its other functionality, M-RELEASE allows one MMS-user to transmit some
user data (the service parameters of the MMS Conclude service) to its peer MMS-user. Upon completion of the
service either (1) the association has been terminated and the MMS environment has been exited (positive result
parameter), or (2) the association could not be terminated (negative result parameter). Figure 3 shows the time
sequence of service primitives for this service.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved18

M-RELEASE.req

M-RELEASE.ind

Communications
Provider

M-RELEASE.rspM-RELEASE.cnf

Requesting MMS user Responding MMS user

Figure 3 - M-RELEASE service

Table 2 shows the parameters of the M-RELEASE service.

 Parameters Req Ind Rsp Cnf

Argument
 Other Communication Parameters
 User Data

Result
 Other Communication Parameters
 User Data

M
M
M

M(=)
M

M(=)

M
M
M

M(=)
M

M(=)

Table 2 - M-Release service parameters

6.9.2.1 Argument

This parameter contains the parameters of the M-RELEASE service of the requesting system.

6.9.2.1.1 Other Communication Parameters

This parameter is one or more parameters specific to the underlying communication system being used.

6.9.2.1.2 User Data

This parameter contains the MMSPdu as formed by the Conclude service request (see clause 8).

6.9.2.2 Result

This parameter shall indicate whether the M-RELEASE service request was accepted or rejected.

6.9.2.2.1 Other Communication Parameters

This parameter is one or more parameters specific to the underlying communication system being used.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 19

6.9.2.2.2 User Data

This parameter contains the MMSPdu as formed by the Conclude service response, (see clause 8).

6.9.3 M-DATA

The M-DATA allows an MMS-user to transfer an arbitrary amount of data to its peer MMS-user. Most MMS
services make use of this service. M-DATA is an unconfirmed service. The principal functionality of M-DATA is
to allow one MMS-user to transmit some user data (the service parameters of the MMS confirmed and unconfirmed
services) to its peer MMS-user. Figure 4 shows the time sequence of service primitives for this service.

M-DATA.req

M-DATA.ind

Communications
Provider

Sending MMS user Receiving MMS user

Figure 4 - M-DATA service

Table 3 shows the parameters of the M-DATA service.

 Parameters Req Ind

 Argument
 User Data

M
M

M
M(=)

Table 3 - M-Data service parameters

6.9.3.1 Argument

This parameter contains the parameters of the M-DATA service of the requesting system.

6.9.3.1.1 User Data

This parameter contains the MMSPdu as formed by the MMS service request or response.

6.9.4 M-U-ABORT

The M-U-ABORT service allows one MMS-user to abruptly terminate the association. The M-U-ABORT service
carries no user data. Figure 5 shows the time sequence of service primitives for this service.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved20

M-U-ABORT.req M-U-ABORT.ind

Communications
Provider

M-U-ABORT.ind

Figure 5 - M-U-ABORT service

Table 4 shows the parameters of the M-U-Abort service.

 Parameters Req Ind

 Argument
 Abort Source

M M
M

Table 4 - M-U-Abort service parameters

6.9.4.1 Argument

This parameter contains the parameters of the M-U-ABORT service of the requesting system.

6.9.4.1.1 Abort Source

This parameter is present in the indication and indicates the source of the abort request. If true, the abort was
requested from the local system; if false, the abort was requested from the remote system.

6.9.5 M-P-ABORT

The M-P-ABORT service provides indication to the MMS-user that the communication system has abruptly
terminated the association. The M-P-ABORT service carries no user data. Figure 6 shows the time sequence of
service primitives for this service.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 21

M-P-ABORT.ind M-P-ABORT.ind

Communications
Provider

Figure 6 - M-P-ABORT service

Table 5 shows the parameters of the M-P-ABORT service.

 Parameters Req Ind

 Abort Source M

Table 5 - M-P-Abort service parameters

6.9.5.1 Abort Source

This parameter is present in the indication and indicates the source of the abort request. If true, the abort was
requested from the local system; if false, the abort was requested from the remote system.

7 The Virtual Manufacturing Device

7.1 Introduction

This clause provides object models for the following objects:

VMD
TRANSACTION

7.1.1 The VMD and the real manufacturing device

The MMS services define the externally visible behaviour of an MMS server application process. This behaviour is
modelled by describing an entity called a Virtual Manufacturing Device (VMD). This clause provides a model for
a VMD. It explains the VMD’s relationship to the underlying communication system. It defines the structural
elements of the VMD and introduces the abstract objects that exist at a VMD and are manipulated on behalf of a
MMS client.

An implementation of an MMS server provides a mapping of the VMD model on to the functionality of a real
manufacturing device. Guidance in the selection of a particular mapping may be found in various Companion
Standards. These Companion Standards address the specific needs of discrete parts manufacturing systems -
numerical controllers, programmable controllers, robotic controllers, and vision systems - and of batch and
continuous process control systems.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved22

NOTE The MMS services do not constrain the behaviour of a client MMS application process, except with respect to valid
sequences of primitives. Therefore a model of the MMS client application process is not provided.

7.1.2 Relationship of the VMD to the OSI Model

A VMD exists within the MMS server application process. It constitutes that portion of an information processing
task that makes available - for control, or monitoring, or both - a set of resources and functionality associated with a
real manufacturing device. An application process may contain zero or more VMDs. If it does not define a VMD
it may not act as an MMS-server.

Each VMD represents a virtual manufacturing device within that AP, and each VMD is logically separate from all
other VMDs.

Example: An MMS system that is connected to a non-MMS environment containing multiple attached manufacturing
devices could be modelled as a single application process containing one VMD for each attached device or as
several application processes, each containing a single VMD for a single, distinct, attached device. The clients of
the VMDs in either case will see a particular attached device as a single VMD. Relative to MMS services, this
VMD will appear to be independent of all other VMDs.

Each AP may contain zero or more AEs, such that an AE represents a set of communication capabilities of the AP
(an AP that contains no AEs may not communicate in the OSI environment).

A VMD may wholly contain zero or more AEs. Each AE in a VMD represents a set of communication capabilities
used by the aspects of the AP represented by a VMD. Each AE is related to one and only one VMD. If a VMD
contains more than one AE, it contains more than one set of communication capabilities.

7.1.3 Relationship of the VMD to a Real Manufacturing Device

A VMD is an abstract representation of a specific set of resources and functionality at the real manufacturing device
and a mapping of this abstract representation to the physical and functional aspects of the real manufacturing
device. This mapping of a virtual resource to the underlying actual resource is of relatively long duration.

Generally, the resources of a given VMD are distinct from, and independent of, the resources of all other VMDs.
When a virtual resource of two (or more) VMDs is mapped to the same underlying physical resource, a mechanism
must be provided by the application process(es), and made available through the VMDs, so that clients of the
various VMDs may coordinate their access to the single real resource. This coordination may be modelled by
requiring each VMD to obtain control of a virtual semaphore whenever disruptive access to the virtual resource is
being requested by an MMS service. This virtual semaphore would then be mapped on to a real semaphore that
controls access to the real resource. With this approach, the virtual semaphores of the various VMDs are
independent when viewed using MMS services. In other words, users of the virtual semaphore of one VMD appear
as though part of the resident system when viewed by users of the semaphores of the other VMDs. (Semaphores
are described in clause 16.)

MMS describes the operation of a VMD by describing the abstract objects that are manipulated by it, and by
describing the set of operations that may be performed on these objects through use of the MMS services.

7.2 The Structure of a VMD

Each VMD contains exactly one Executive Function and zero or more Program Invocations, each of which depend
on one or more Domains. The Domain represents a specific use of a set of capabilities of the VMD. The state of
the VMD, in the complete sense, is determined by the values of all the attributes of the VMD, including all the
attributes of its Domains and their subordinate objects. The elements of the VMD are described using an ASN.1
module containing Object Class definitions for each object. The module begins with an ASN.1 module header
exporting symbols to the module contained in ISO 9506-2 that defines the abstract syntax.

 MMS-Object-Module-1 { iso standard 9506 part(1) mms-object-model-version1(2) }
 DEFINITIONS ::= BEGIN

 --
 -- This ASN.1 specification has been checked for conformance with the
 -- ASN.1 standard by the OSS ASN.1 Tools.
 --

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 23

 EXPORTS AccessCondition,
AdditionalCBBOptions,
AdditionalSupportOptions,
Address,
AlarmAckRule,
Control-State,
DomainState,
EC-State,
EC-Class,
EE-Duration,
EE-Class,
EventTime,
Journal-Variable,
LogicalStatus,
Modifier,
normalPriority,
normalSeverity,
ParameterSupportOptions,
PhysicalStatus,
Priority,
ProgramInvocationState,
Running-Mode,
ServiceSupportOptions,
Severity,
Transitions,
TypeDescription,
ULState,
VMDState;

 IMPORTS ApplicationReference,
Authentication-value FROM
MMS-Environment-1 { iso standard 9506 part(2) mms-environment-version1(4) }
AlternateAccess,
ConfirmedServiceRequest,
AttachToSemaphore,
AttachToEventCondition,
Data,
EE-State,
Identifier,
Integer8,
Integer32,
MMSString,
MMS255String,
ObjectName,
TimeOfDay,
TypeSpecification,
Unsigned32,
Unsigned8 FROM
ISO-9506-MMS-1 { iso standard 9506 part(2) mms-abstract-syntax-version1(1) };

 -- Part 1 - Object Model Definitions
--
-- Note - ASN.1 rules for interpreting the object formalism.
--
-- Each field has a field identifier possibly followed by a name.
-- The field identifier begins with an '&' and is followed by a reference name,
-- beginning with either a lower case or an upper case letter.
--
-- If the field identifier begins with '&' Upper case letter:
--
-- If there is no following name,
-- the field identifies a type.
-- If the following name is mixed case
-- and begins with an upper case letter,
-- or if the following name is upper case
-- and the name of a Universal type,
-- the field identifies a value set.
-- If the following name is upper case
-- and the name of an Object Class,
-- the field identifies an Object Set.
--
-- If the field identifier begins with '&' lower case letter:
--
-- If the following name is upper case
-- and the name of an Object Class,
-- the field identifies an Object (instance).
-- If the following name is mixed case
-- and begins with an upper case letter,
-- or if the following name is upper case
-- and is the name of a Universal type,
-- the field identifies a value.
--

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved24

7.2.1 VMD Object Model

This clause introduces the model for the VMD.

 VMD ::= CLASS {
&executiveFunction ApplicationReference,
&vendorName MMSString,
&modelName MMSString,
&revision MMSString,
&AbstractSyntaxes ABSTRACT-SYNTAX OPTIONAL,
&EATransactions TRANSACTION OPTIONAL,
&Associations APPLICATION-ASSOCIATION,
&accessControl Identifier,
&logicalStatus LogicalStatus,
&Capabilities MMSString,
&physicalStatus PhysicalStatus,
&local-detail BIT STRING(SIZE (1..128)),
&AccessControlLists ACCESS-CONTROL-LIST OPTIONAL,
&Domains DOMAIN OPTIONAL,
&ProgramInvocations PROGRAM-INVOCATION OPTIONAL,
&UnitControls UNIT-CONTROL OPTIONAL,

IF (vadr)
&UnnamedVariables UNNAMED-VARIABLE OPTIONAL,

ENDIF
IF (vnam)

&NamedVariables NAMED-VARIABLE OPTIONAL,
IF (vlis)

&NamedVariableLists NAMED-VARIABLE-LIST OPTIONAL,
ENDIF

&NamedTypes NAMED-TYPE OPTIONAL,
ENDIF

&DataExchanges DATA-EXCHANGE OPTIONAL,
&Semaphores SEMAPHORE OPTIONAL,
&OperatorStations OPERATOR-STATION OPTIONAL,
&EventConditions EVENT-CONDITION OPTIONAL,
&EventActions EVENT-ACTION OPTIONAL,
&EventEnrollments EVENT-ENROLLMENT OPTIONAL,

IF (cspi)
&EventConditionLists EVENT-CONDITION-LIST OPTIONAL,

ENDIF
&Journals JOURNAL OPTIONAL

IF (csr)
, &operationState VMDState,

&safety-Interlocks-Violated BOOLEAN,
&any-Resource-Power-On BOOLEAN,
&all-Resources-Calibrated BOOLEAN,
&local-Control BOOLEAN,
&selected-Program-Invocation Identifier

ENDIF
}

7.2.1.1 &executiveFunction

The &executiveFunction field identifies the VMD. The value of this field is of type ApplicationReference. For OSI
specific communications systems, this type is defined in Annex A. For other communication systems, a similar
definition of ApplicationReference must be supplied. The existence of a fully functional &executiveFunction
exactly corresponds with the existence of the VMD.

7.2.1.2 &vendorName

The &vendorName field is a character string that identifies the vendor of the system that supports this VMD.

7.2.1.3 &modelName

The &modelName field is a character string that identifies the model of the system that supports this VMD. The
value of this string is normally assigned by the vendor.

7.2.1.4 &revision

The &revision field is a character string that identifies the revision level of the system that supports this VMD. The
value of this string is normally assigned by the vendor.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 25

7.2.1.5 &AbstractSyntaxes

The &AbstractSyntaxes field identifies the set of Abstract Syntaxes that this VMD is able to support in the MMS
Application Context. This field includes any abstract syntax that can be recognized as an encoding for Load Data
and Execution Argument. The abstract syntax defined in ISO 9506-2 shall not be included in the field. The
ABSTRACT-SYNTAX object is defined in ISO/IEC 8824-2, Annex B.

7.2.1.6 &EATransactions

This field identifies those transaction objects that do not explicitly depend on an application association. Such
transactions occur through the processing of Event Actions. Transaction objects are described in 7.3.1.

7.2.1.7 &Associations

This field identifies the associations established between this VMD and external MMS clients. In order for MMS
services to be used, at least one such association is required. Association establishment and the Application
Association object are described in clause 8.

7.2.1.8 &accessControl

This field identifies an Access Control List object that specifies necessary (but not sufficient) conditions for an
MMS service to succeed. The conditions specified in this Access Control List object shall be satisfied for the
service class corresponding to the requested service in order for the service to succeed. Additional conditions for
success may be imposed by an Access Control List object referenced by the object of the service request. If no
other specification has been provided, this field should reference the predefined symbol 'M_NonDeletable'. The
Access Control List object is described in clause 9.

7.2.1.9 &logicalStatus

The &logicalStatus field identifies one of four levels of functionality of the VMD available through MMS.

 LogicalStatus ::= [0] IMPLICIT INTEGER {
state-changes-allowed (0),
no-state-changes-allowed (1),
limited-services-permitted (2),
support-services-allowed (3) } (0..3)

7.2.1.9.1 state-changes-allowed

If &logicalStatus has this value, all MMS services supported by this VMD may be performed.

7.2.1.9.2 no-state-changes-allowed

If &logicalStatus has this value, the only MMS services that may be performed (if the VMD supports the service)
are:

Abort
Conclude
Cancel
GetAccessControlListAttributes
GetAlarmEnrollmentSummary
GetAlarmSummary
GetCapabilityList
GetDataExchangeAttributes
GetDomainAttributes
GetECLAttributes
GetEventActionAttributes
GetEventConditionAttributes
GetEventEnrollmentAttributes
GetNamedTypeAttributes
GetNamedVariableListAttributes
GetNameList
GetProgramInvocationAttributes

GetUnitControlAttributes
GetVariableAccessAttributes
Identify
Initiate
Read
ReadJournal
ReportAccessControlledObjects
ReportECLStatus
ReportEventActionStatus
ReportEventConditionStatus
ReportEventEnrollmentStatus
ReportJournalStatus
ReportPoolSemaphoreStatus
ReportSemaphoreEntryStatus
ReportSemaphoreStatus
Status

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved26

7.2.1.9.3 limited-services-permitted

If &logicalStatus has this value, the only MMS services that may be performed are: Abort, Conclude, Status and
Identify.

7.2.1.9.4 support services allowed

If &logicalStatus has this value, all MMS services supported by the VMD except the Start, Stop, Reset, Resume,
Kill, StartUnitControl, and StopUnitControl services may be performed.

7.2.1.10 &Capabilities

A VMD represents the real device to the MMS client by providing capabilities that may be used by the MMS client
in order to effect some control or monitoring (or both) activity through the VMD.

A capability is a locally defined resource (physical or logical) or a locally defined set of resources that can be
identified by a character string. The definition and management of capabilities is outside the scope of this part of
ISO 9506. However, it is assumed that the existence and status of capabilities are known by the
&executiveFunction, and that the &executiveFunction contains sufficient knowledge in order to "allocate"
capabilities to the various Domains that may be created. No object model is provided for a capability, since it is
considered primitive from the MMS point of view.

A capability may be sharable (or not) depending on local criteria. Additionally, a capability may be distinct, or it
may encompass (or be encompassed by) one or more other capabilities.

NOTE An implementation of an MMS server should provide a mapping of the VMD model on to the functionality of a real
device. Guidance in the selection of a particular mapping may be found in various Companion Standards. In
particular, the Companion Standards will aid in the identification of Domains and Program Invocations with features
of real systems. The field "capability" is intended to allow expression of features of the implementation needed for
relating any real implementation to the VMD model and to the extended model provided by the Companion Standard.
The use of capabilities in any MMS implementation requires prior agreement between implementations of MMS client
and server.

7.2.1.11 &physicalStatus

Associated with each capability is one or more attributes that describe the state of the capability. It is outside the
scope of this part of ISO 9506 to provide a uniform representation of these attributes. However, it is useful to
provide a standard representation of the gross aspects of all the capabilities, taken together, in order to characterize
the operational state of the hardware. The &physicalStatus field represents this attribute (of the entire collection of
capabilities) of the real device.

NOTE This status refers to the hardware associated with the device's operation. It is unrelated to the ability of the device to
communicate.

 PhysicalStatus ::= [1] IMPLICIT INTEGER {
operational (0),
partially-operational (1),
inoperable (2),
needs-commissioning (3) } (0..3)

7.2.1.11.1 operational

The real device associated with this VMD has no known deficiencies and is able to perform its intended tasks.

7.2.1.11.2 partially-operational

One or more functions of the real device cannot be performed due to hardware malfunctions or limitations.

7.2.1.11.3 inoperable

One or more significant problems exist at the real device that prevent it from doing any useful task.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 27

7.2.1.11.4 needs-commissioning

The device is in a state such that a local commissioning process needs to be performed before useful tasks can be
accomplished.

7.2.1.12 &local-detail

This attribute is a bitstring that represents additional detail about the status of the VMD as specified by the vendor
of the device. The maximum length of the bitstring is 128 bits. The contents of this attribute is a local matter and
not a subject for further standardization.

7.2.1.13 &AccessControlLists

This field identifies the Access Control List objects whose name scope is VMD-specific. Access Control List
objects are described in clause 9.

7.2.1.14 &Domains

A Domain represents a specific instance of use of a set of capabilities of the VMD. A Domain includes those
aspects of a VMD that are associated with specific elements (possibly all) of a coordinated control or monitoring
(or both) strategy. The allocation of the capabilities of a VMD to the Domains may be static or it may be dynamic.
If the allocation is static, the Domain is predefined within the MMS server and its name is known. If the allocation
is dynamic, the Domain comes into existence and is removed from the VMD either through the action of MMS
services or through local actions. Within a given VMD, either or both types of Domains may exist. Domains are
further described and an object model is provided in clause 11.

A Domain may be empty or it may contain "information". The "information" may be program instructions for some
processor or tables of values or other classes of data or all of the above. For dynamic Domains that come into
existence through MMS services, the Domains are implicitly created by the process of loading their contents.
Dynamic Domains may also be created through actions of the Program Invocation when it is in execution or
through other local means.

The Domain content is often closely associated with a file. The concept of file, although it appears in some MMS
services, is not defined within MMS. The file may be part of a virtual Filestore (ISO 8571) that is part of the
Application Process that contains the VMD, or it may be locally defined. If the "information" within a file is a part
of the VMD and can be used directly by the VMD (as a component of a Program Invocation), it can be considered
to be a Domain. The file, however, must be considered a separate object, outside the scope of the VMD.

Many MMS objects may be defined subordinate to (within the name space of) a Domain. Thus, a Domain
represents a single name space in which MMS objects are uniquely identifiable.

7.2.1.15 &ProgramInvocations

A Program Invocation consists of a set of procedural and data elements contained within Domains together with
execution control information. These elements may be predefined within the VMD, or they may be dynamically
defined (for example by creation of a Domain through use of the MMS load services), or both. The Program
Invocation itself may be predefined within the VMD, or it may be dynamically created and deleted either by local
means or through the use of MMS services. An object model of the Program Invocation is given in clause 12.

7.2.1.16 &UnitControls

This field identifies the Unit Control objects in the VMD. Unit Controls always have a name scope that is VMD-
specific. Unit Control objects are described in clause 13.

7.2.1.17 &UnnamedVariables

The VMD may allow direct access to the memory space of the underlying computer. This field is present only if
the vadr parameter CBB has been negotiated. Such access is characterized by a machine address and possibly a
type specification corresponding to that address. Unnamed Variables are described in clause 14.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved28

7.2.1.18 &NamedVariables

This field identifies the Named Variable objects whose name scope is VMD-specific. This field is present only if
the vnam parameter CBB has been negotiated. Named Variables are described in clause 14.

7.2.1.19 &NamedVariableLists

This field identifies the Named Variable List objects whose name scope is VMD-specific. This field is present only
if the vnam and the vlis parameter CBB's have been negotiated. Named Variables Lists are described in clause
14.

7.2.1.20 &NamedTypes

This field identifies the Named Type objects whose name scope is VMD-specific. This field is present only if the
vnam parameter CBB has been negotiated. Named Types are described in clause 14.

7.2.1.21 &DataExchanges

This field identifies the Data Exchange objects whose name scope is VMD-specific. Data Exchange objects are
described in clause 20.

7.2.1.22 &Semaphores

This field identifies the Semaphore objects whose name scope is VMD-specific. Semaphores are described in
clause 16.

7.2.1.23 &OperatorStations

This field identifies the Operator Station objects whose name scope is VMD-specific. Operator Stations are
described in clause 17.

7.2.1.24 &EventConditions

This field identifies the Event Condition objects whose name scope is VMD-specific. Event Conditions are
described in clause 19 and event processing is described in clause 18.

7.2.1.25 &EventActions

This field identifies the Event Action objects whose name scope is VMD-specific. Event Actions are described in
clause 20 and event processing is described in clause 18.

7.2.1.26 &EventEnrollments

This field identifies the Event Enrollment objects whose name scope is VMD-specific. Event Enrollments are
described in clause 21 and event processing is described in clause 18.

7.2.1.27 &EventConditionLists

This field identifies the Event Condition List objects whose name scope is VMD-specific. Event Condition Lists
are described in clause 22 and event processing is described in clause 18.

7.2.1.28 &Journals

This field identifies the Journal objects whose name scope is VMD-specific. Journals are described in clause 16.

7.2.1.29 &operationState

This field represents the state of the system. This field is present only if the csr parameter CBB has been
negotiated. The field is used solely for systems (such as robots) in which the VMD represents a single, complex
piece of machinery with operational states. The relationship of this field to the physical devices and to the state of
the Controlling Program Invocations is defined below.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 29

 VMDState ::= INTEGER {
idle (0),
loaded (1),
ready (2),
executing (3),
motion-paused (4),
manualInterventionRequired (5) } (0..5)

7.2.1.30 &safety-Interlocks-Violated

This field, of type boolean, indicates the state of the safety interlocks. This field is present only if the csr
parameter CBB has been negotiated. The field is used solely for robots and similar equipment having a safety
interlock mechanism. If the value of this field is true, the safety interlocks have been violated since the system was
last reset. The method of resetting the safety interlocks is a local matter.

7.2.1.31 &any-Resource-Power-On

This field, of type boolean, indicates whether (true) or not (false) any physical resource has power applied to it.
This field is present only if the csr parameter CBB has been negotiated. The value of this field is the logical 'OR'
of a similar primitive attribute of each physical resource in the system.

7.2.1.32 &all-Resources-Calibrated

This field, of type boolean, indicates whether (true) or not (false) all the physical resources in the system that have
calibration attributes are in fact calibrated. This field is present only if the csr parameter CBB has been
negotiated.

7.2.1.33 &local-Control

This field, of type boolean, indicates whether (true) or not (false) some local agent has control of any of the
physical resources of the system. This field is present only if the csr parameter CBB has been negotiated. Having
control indicates the ability to cause actions that change the physical resources and hence the attributes that
represent those resources. &local-Control can reflect either a human operator or some automatic procedure, either
of which inhibit the assertion of control remotely.

If &local-Control is false, control may reside in some remote agent. This condition can also reflect a condition in
which the system is running under no direct control other than its task program.

The value of the &local-Control field, the &operation-State field, and the &logical-Status field are interrelated.
Table 6 illustrates the relationship between these attributes.

Local
Control

Operation State VMD Logical Status

TRUE Any NO-STATE-CHANGES-ALLOWED or
LIMITED-SERVICES-PERMITTED or

SUPPORT-SERVICES-ALLOWED

FALSE MANUAL-
INTERVENTION-

REQUIRED

NO-STATE-CHANGES-ALLOWED or
LIMITED-SERVICES-PERMITTED or

SUPPORT-SERVICES-ALLOWED

Any other Any

Table 6 - Local control

NOTE While &local-Control is true, the &operation-State can continue to change. However, it is a local matter how the state
changes occur.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved30

7.2.1.34 &selected-Program-Invocation

This field identifies the Program Invocation that has been selected to control the operation of the system. This field
is present only if the csr parameter CBB has been negotiated. This Program Invocation has its &control field
equal to controlling and has been selected through the use of the Select operation.

7.2.2 Initialization of the VMD

Clause 25 of ISO 9506-2 describes the initialization of the VMD.

7.2.3 Services on the VMD

Clause 10 describes the MMS services that operate on the VMD in its entirety.

7.3 Transactions

This clause introduces a model of the Transaction and its processing.

7.3.1 Transaction Object Model

Most MMS services are confirmed services (see ISO 9506-2, clause 6). When the VMD receives an indication
primitive for one of the confirmed services, a Transaction object is created that governs the processing of this
service. The description of that object follows:

 TRANSACTION ::= CLASS {
&invokeID INTEGER UNIQUE,

IF (attachToEventCondition attachToSemaphore)
&Pre-excutionModifiers ModifierStep OPTIONAL,
¤tModifier CHOICE {

modifier ModifierStep,
none NULL },

ENDIF
&confirmedService-Request ConfirmedServiceRequest,

IF (attachToSemaphore)
&Post-executionModifiers ModifierStep OPTIONAL,

ENDIF
&cancelable BOOLEAN }

7.3.1.1 &invokeID

This field is an integer that serves to identify the transaction within the Application Association.

7.3.1.2 &Pre-excutionModifiers

This field is an ordered set of modifiers to be satisfied before execution of the Confirmed Service Request can
begin. This set may be empty.

 ModifierStep ::= SEQUENCE {
modifierID INTEGER,
modifier Modifier
}

 Modifier ::= CHOICE {
IF (attachToEventCondition)

eventModifier [0] IMPLICIT AttachToEventCondition
IF (attachToSemaphore)
,
ENDIF
ENDIF
IF (attachToSemaphore)

semaphoreModifier [1] IMPLICIT AttachToSemaphore
ENDIF

}

7.3.1.2.1 eventModifier

The AttachToEventCondition modifier is described in clause 18.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 31

7.3.1.2.2 semaphoreModifier

The AttachToSemaphore modifier is described in clause 16.

7.3.1.3 ¤tModifier

This field identifies the Semaphore Entry object or the Event Enrollment object controlling the current modifier's
execution. This field is initially empty. It changes to identify the modifier in the Set of Pre-Execution Modifiers as
they are processed. If the Set of Pre-Execution Modifiers is empty, this field will always be none.

7.3.1.4 &ConfirmedService-Request

This field identifies the pending service, including its arguments.

7.3.1.5 &Post-executionModifiers

This field identifies the set of Semaphore Entry objects that this service invocation owns due to a processed Attach
to Semaphore modifier. Attach to Event Condition modifiers do not occur on the list of &Post-executionModifiers.

7.3.1.6 &cancelable

This field identifies whether or not the service may be cancelled. Initially true, the MMS server may set this field
false during the processing of the service request.

7.3.2 Initialization of Transaction objects

A Transaction object shall be created upon receipt of an indication service primitive for an MMS confirmed service,
and deleted after the MMS-user issues a response service primitive for that service instance. The number of
Transaction objects that may exist at any time is governed by the negotiated maximum number of services
outstanding (see 8.2).

Upon receipt of a Confirmed Service indication, the MMS Server shall create a new Transaction object and
initialize it as follows:

 transaction TRANSACTION ::= {
&invokeID newID,
&Pre-excutionModifiers serviceParameter,
&CurrentModifier none: NULL,
&confirmedService-Request serviceParameter,
&Post-executionModifiers { },
&cancelable TRUE
}

NOTE This production is not valid ASN.1 as written. The MMS Server should substitute a valid integer value for newID to
identify the transaction, and insert the parameters from the Confirmed Service indication for the &Pre-
executionModifiers and the &confirmedService-Request.

7.3.2.1 &invokeID

The MMS server shall assign an integer value to this field. This value shall be unique to this application
association.

7.3.2.2 &Pre-excutionModifiers

The MMS server shall assign a value set to this field corresponding to the parameters of the service indication.

7.3.2.3 &CurrentModifier

The MMS server shall assign an initial value of none to this field.

7.3.2.4 &confirmedService-Request

The MMS server shall assign a value to this field corresponding to the parameter of the service indication.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved32

7.3.2.5 &Post-executionModifiers

The MMS server shall assign an empty value set as the initial value of this field.

7.3.2.6 &cancelable

The MMS server shall assign the value TRUE as the initial value of this field. The Cancelable attribute of the
Transaction object shall not be set to FALSE during the processing of the pre-execution modifiers. After all
pre-execution modifiers have been processed, the cancelable attribute may be set to FALSE by the MMS-user at
any time as a local matter, subject to the requirements for the Cancel service and the service named in the
Confirmed Service Request. The cancelable attribute shall have been set to FALSE by the time that post-execution
modifier processing takes place.

7.3.3 Processing of Transaction objects

A Transaction object shall be created either upon receipt of an indication service primitive for an MMS confirmed
service or as part of the processing of an event occurrence (see 18.1.1). The Transaction object shall be deleted
after the MMS-user issues a response service primitive for that service instance. The number of Transaction objects
that may exist at any time is governed by the negotiated maximum number of services outstanding (see 8.2).

NOTE Although this part of ISO 9506 requires that Transaction objects be initialized in the order of receipt, there is no such
requirement for the order of processing of these objects. To enforce serialization of actions, the MMS client should
wait for a service response before issuing subsequent service requests.

Each of the pre-execution modifiers shall be processed in order. Each modifier shall complete successfully before
the next modifier is processed. If a modifier fails (see definition of particular modifiers), the MMS-user shall
process the Post-execution modifier list (as specified below) and issue a Response(-) service primitive, specifying
the appropriate error class and code, and the Transaction object shall be deleted. The &CurrentModifier field shall
be set to indicate the modifier currently being processed in the list. The &CurrentModifier field shall be identified
by an integer, where 1 indicates the first element in the list. For each AttachToSemaphore modifier that is
successfully processed, an entry shall be made in the &Post-executionModifiers field (in order to allow
relinquishing of control of the semaphores after service execution). The &Post-executionModifiers field shall be
constructed in reverse order, such that the first pre-execution modifier becomes the last post-execution modifier.

After all pre-execution modifiers have been processed successfully (if any are specified on the indication service
primitive), the Confirmed Service Request shall be executed in accordance with the service procedure specified in
this part of ISO 9506 for the named service.

Following completion of the service request, the MMS-user shall process the post-modifiers in the List Of
&Post-executionModifiers field in the order that they are specified in the list (note that this is the opposite of the
order in which the pre-execution modifiers were executed).

After all post-execution modifiers have been processed, the response service primitive shall be issued by the
MMS-user. The &CurrentModifier field is used to indicate the current modifier during the processing of this list.

7.4 Specification of Named objects

MMS objects are normally referenced by name. The name of an object shall be unique within its scope of
definition and within the class of object it identifies.

7.4.1 Scope of Names

MMS names can have one of three scopes, VMD-specific Domain-specific, and Application Association-specific.

7.4.1.1 VMD-specific Scope

A name that has VMD-specific scope shall be unique among all VMD-specific objects of the same object class.
Such a name may be referenced by all clients of the VMD instance on any application association with it.
VMD-specific objects persist after the MMS application association ceases to exist.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 33

7.4.1.2 Domain-specific Scope

A Domain represents a single flat name space. A name that is Domain-specific shall be unique for its class of
object within the Domain in which it is defined. The unique identification of such an object requires the
specification of the name of the Domain and the name of the object, thus implying a two level naming hierarchy.

7.4.1.3 Application Association-specific Scope

A name having "Application Association-specific" (AA-specific) scope may only be referenced by the MMS client
for which the name was defined, and only on the specific application association over which the name's definition is
valid. The definition of an object bearing an application association-specific name, if not explicitly deleted
previously, shall be deleted whenever the defining application association ceases to exist.

7.4.2 Classes of objects

The specific instances of MMS objects that can be named are listed in Table 7. Not all objects can have all possible
Name Scopes. The allowed combinations are indicated by Xs in Table 7.

VMD Domain AA clause

Access Control List Objects X 9

Domain Objects X 11

Program Invocation Objects X 12

Unit Control Objects X 13

Named Variable Objects X X X 14

Named Variable List Objects X X X 14

Named Type Objects X X X 14

Data Exchange Objects X 15

Semaphore Objects X 16

Operator Station Objects X 17

Event Condition Objects X X X 19

Event Action Objects X X X 20

Event Enrollment Objects X X X 21

Event Condition Lists X X X 22

Journal Objects X X X 23

Table 7 - Name Class and Scope

There are other limitations on the names of Event Conditions, Event Actions, and Event Enrollments. Creation of a
semaphore automatically creates an Event Condition of the same name (see 16.4). Therefore, a semaphore cannot
be proposed for creation that has the same name as an existing Event Condition. If the monitor parameter is
selected, the creation of a Program Invocation automatically creates an Event Condition, and Event Action, and an
Event Enrollment, all having the same name as the Program Invocation (see 12.2). Therefore, a Program
Invocation cannot be proposed for creation whose name is the same as an existing Event Condition, Event Action,
or Event Enrollment.

7.4.3 Object lifetime

Each of the objects listed above has a lifetime within the VMD that can be inferred from the scope of its name.

VMD-specific Scope - Such objects exist as long as the VMD exists (unless explicitly deleted).

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved34

Domain-specific Scope - Such objects exist as long as the Domain on which they depend exists (unless
explicitly deleted).

AA-specific Scope - Such objects exist only as long as the Application Association over which they were
defined continues to exist (unless explicitly deleted).

7.4.4 Object visibility

The Name Scope of a named object also determines the visibility of the object. An object whose name is
VMD-specific or Domain-specific may be referenced by any association to the VMD; an object whose name is
AA-specific may only be referenced on the association over which the object was defined.

7.4.5 Creation of MMS objects

Each of the MMS objects can either be static, that is predefined within the implementation, or dynamic, coming into
existence during the course of operation of the VMD. Static objects usually may not be deleted through the use of
MMS services, and dynamic objects usually may be deleted, but there may be exceptions to either rule. Static
objects are predefined by the implementation and have names assigned to them either by the implementor, or in
conformance to this part of ISO 9506 or to one of the Companion Standards.

Dynamic objects can come into existence either (1) through explicit MMS service procedures, (2) through local
action of the system or of the system operators, or (3) through the execution of some Program Invocation. The
means of local creation is outside the scope of this part of ISO 9506. However, if a locally created object is to be
visible to MMS services, its external behaviour, including all its visible attributes, shall be consistent with this
service definition.

7.4.6 Deletion of MMS objects

All MMS objects subordinate to the VMD may be deleted from the VMD through appropriate MMS service
requests if such requests are permitted (see 9.1.1.8). In addition to this explicit method of deletion, MMS objects
may also be deleted through local action of the system or of the system operators or through the execution of some
Program Invocation. The means of local deletion is outside the scope of this part of ISO 9506. Objects that are
subordinate to a Domain are automatically deleted when the Domain is deleted. This is true regardless of any
conditions specified in the Access Control List object referenced by the object subordinate to the Domain.

7.4.7 Alteration of MMS objects

All MMS objects have as part of their description a list of externally visible attributes. In addition to the MMS
services that alter these attributes, these attributes may also be changed through the local action of the system or of
the system operators, or through the execution of a Program Invocation. In particular, the values of variables
associated with Domains or with the VMD directly may change due to the execution of a Program Invocation. The
means of local alteration of object attributes is outside the scope of this part of ISO 9506.

A VMD should, if possible, guarantee that access to any MMS object required by an MMS service is not
interruptible. In other words, for the entire duration of the MMS service, the object should have a set of attributes
that represent the state of the VMD at a single instant of time. Since such guarantees may not be possible, or if
possible for some objects may not be possible for all objects, the static conformance statement for the VMD shall
state whether uninterruptible access is supported and, if supported, under what constraints it is guaranteed.

7.4.8 Control of Access to MMS objects

This International Standard provides explicit control for the ability to access or alter MMS named objects. Each
named object within an MMS implementation contains a reference to an Access Control List object that specifies
the conditions under which services directed at the named object may succeed. For the purposes of specifying the
control conditions, services are grouped into seven classes, read, write, load, store, execute, delete, and edit. The
control conditions include possession of a semaphore, identity of user (Application Reference), and the submission
of a password (which may be arbitrarily complex). These conditions are necessary but not sufficient for the success
of the service. If the conditions are not satisfied, the service is required to fail; the service may always fail for
reasons beyond the scope of this standard. These conditions may be combined in arbitrary ways. Conditions may
be specified separately for individual objects and for all objects of the VMD. Conditions restricting creation of
objects can only be specified for the entire VMD.

In the second amendment to the first edition of ISO/IEC 9506:1990, the &accessControlList field of named objects
replaced the MMS Deletable attribute of the first edition of MMS. For backward compatibility, a derivation rule

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 35

from the &accessControlList is provided for services that report the value of the MMS Deletable attribute. Using
this rule, implementations of earlier versions of MMS will be able to interwork with implementations of this version
of MMS as long as the additional services specified in this version are not employed.

The aco parameter CBB is used to indicate whether or not the object reporting services shall report attributes
related to the use of Access Control Lists.

7.5 Object Name structure

The parameter Object Name occurs frequently in the specification of MMS services. The structure of the Object
Name is shown in Table 8.

 Object Name Req/Rsp Ind/Cnf

 Name Scope
 AA-specific
 Item Identifier
 Domain-specific
 Domain Identifier
 Item Identifier
 VMD-specific
 Item Identifier

M
S
M
S
M
M
S
M

M(=)
S(=)
M(=)
S(=)
M(=)
M(=)
S(=)
M(=)

Table 8 - Object Name

7.5.1 Name Scope

This parameter specifies which of the possible scopes is to be used for this Object Name.

7.5.2 AA-specific

Some named objects may have an AA-specific name. AA-specific objects shall only exist as a result of a definition
of the name over the association by an MMS Service. As there is no MMS service to create AA-specific Data
Exchange objects, these objects may be created by local action at the time of association establishment.

7.5.2.1 Item Identifier

This parameter, of type Identifier, is the name of the object. This parameter shall be unique within this application
association for the class of object named.

7.5.3 Domain-specific

Named objects that depend on a Domain have names that are Domain-specific.

7.5.3.1 Domain Identifier

This parameter, of type Identifier, is itself a VMD-specific name of the Domain that contains the named object.

7.5.3.2 Item Identifier

This parameter, of type Identifier, is the name of the object within the named Domain. This parameter shall be
unique within the named Domain for the class of object named.

7.5.4 VMD-specific

Any named object may have a VMD-specific name.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved36

7.5.4.1 Item Identifier

This parameter, of type Identifier, is the name of the object. This parameter shall be unique within the VMD for the
class of object named.

7.6 Object Class structure

The parameter Object Class occurs frequently in the specification of MMS services. The structure of the Object
Class is shown in Table 9.

 Object Class Req/Rsp Ind/Cnf

 Object Class
 Basic Object Class
 Extended Object Class

M
S
S

M(=)
S(=)
S(=)

Table 9 - Object Class

7.6.1 Object Class

This parameter specifies the class of object under consideration. For historical reasons, the choices fall into one of
categories. One of the following parameters shall be chosen.

7.6.2 Basic Object Class

This parameter shall be chosen if the object is one of the following:

a) Named Variable
b) Scattered Access
c) Named Variable List
d) Named Type
e) Semaphore
f) Event Condition
g) Event Action

h) Event Enrollment
i) Journal
j) Domain
k) Program Invocation
l) Operator Station
m) Data Exchange
n) Access Control List

7.6.3 Extended Object Class

This parameter shall be chosen if the object is one of the following:

a) EventConditionList
b) UnitControl

8 Environment And General Management services

8.1 Introduction and Models

This clause provides a model for the following object:

APPLICATION-ASSOCIATION

This clause specifies the following services:

Initiate
Conclude
Abort

Cancel
Reject

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 37

8.1.1 Environment Management State Diagram

This clause defines the state diagram for entering and leaving the MMS environment. The initial state for both the
calling and called MMS users shall be the state "No MMS Environment". The state diagram is depicted from the
point of view of an MMS-user. The state of the MMS environment is within the context of a specific application
association. Restrictions on the use of MMS services within this environment shall not apply to other environments
established by the MMS-user on different application associations.

No MMS

Environment

 MMS

Environment

Establishing
MMS Environment

 (Called)

Establishing
MMS Environment

 (Calling)

Relinquishing
MMS Environment

 (Responder)

Relinquishing
MMS Environment

 (Requester)

7

10

7

2
5

3

7

6
1 7

7

11
4

9

12 13
8

Figure 7 - Environment Management State Diagram

Transitions:
1 - initiate.request
2 - initiate.indication
3 - initiate.response(+)
4 - initiate.confirm(+)
5 - initiate.response(-)
6 - initiate.confirm(-
7 - abort.request or abort.indication

8 - conclude.request
9 - conclude.indication
10 - conclude.response(+)
11 -conclude.confirm(+)
12 - conclude.response(-)
13 - conclude.confirm(-)

8.1.2 Restriction on Use of MMS services

This clause places restrictions on the use of MMS services for certain states. The restrictions in this clause are
supplementary to other restrictions placed by other clauses in this part of ISO 9506.

8.1.2.1 The "No MMS Environment" state

While in the state "No MMS Environment", an MMS-user shall only issue the initiate.request service primitive.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved38

8.1.2.2 The "Establishing MMS Environment (Calling) state

While in the state "Establishing MMS Environment (Calling)", an MMS-user shall only issue the abort.request
service primitive.

8.1.2.3 The "Establishing MMS Environment (Called) state

While in the state "Establishing MMS Environment (Called)", an MMS-user shall only issue the initiate.response or
abort.request service primitives.

8.1.2.4 The "MMS Environment" state

Clauses 8 to 23 place requirements on the use of service primitives in the state "MMS Environment". This state is
divided into a series of substates, which are described in those clauses. All MMS states except the "No MMS
Environment", "Establishing MMS Environment (Calling)", "Establishing MMS Environment (Called)",
"Relinquishing MMS Environment (Requester)" and "Relinquishing MMS Environment (Responder)" are substates
of the "MMS Environment" state.

The only events that cause an exit from the "MMS Environment" state are the issuance of an abort.request service
primitive, the issuance of a conclude.request service primitive, the receipt of an abort.indication service primitive,
or the receipt of a conclude.indication service primitive.

While in the state "MMS Environment", an MMS-user may issue any request or response service primitive, subject
to the following restrictions:

a) other clauses of this part of ISO 9506 restrict the usage of services and service primitives via sequencing
requirements;

b) a response primitive shall not be issued unless a request primitive for a corresponding service indication has
been received (see ISO 9506, clause 7);

c) the initiate.request service primitive shall not be issued.

8.1.2.5 The "Relinquishing MMS Environment (Requester)" state

While in the state "Relinquishing MMS Environment (Requester)", the only request primitive that the MMS-user
may issue is the abort.request service primitive. Note that responses, either (+) or (-) may continue to be issued.

8.1.2.6 The "Relinquishing MMS Environment (Responder)" state

While in the state "Relinquishing MMS Environment (Responder)", the MMS-user may only issue the abort.request
and conclude.response service primitives.

8.1.3 Application Association

This clause introduces the model of the application association.

 APPLICATION-ASSOCIATION ::= CLASS {
&aaIdentifier INTEGER UNIQUE,
&client ApplicationReference,
&abstractSyntax ABSTRACT-SYNTAX,
&authenticationValue Authentication-value OPTIONAL,

 -- This field represents a 'user password'
&Transactions TRANSACTION OPTIONAL,

IF (vnam)
&NamedVariables NAMED-VARIABLE OPTIONAL,

IF (vlis)
&NamedVariableLists NAMED-VARIABLE-LIST OPTIONAL,

ENDIF
&NamedTypes NAMED-TYPE OPTIONAL,

ENDIF
&EventConditions EVENT-CONDITION OPTIONAL,
&EventActions EVENT-ACTION OPTIONAL,
&EventEnrollments EVENT-ENROLLMENT OPTIONAL,
&EventConditionLists EVENT-CONDITION-LIST OPTIONAL,
&Journals JOURNAL OPTIONAL,
&services ServiceSupportOptions,
¶meters ParameterSupportOptions,
&nest INTEGER,

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 39

&Ulsms ULSM OPTIONAL
IF (csr cspi)
, &extendedServices AdditionalSupportOptions
ENDIF
IF (cspi)
, &extendedParameters AdditionalCBBOptions
ENDIF

}

Instances of this object class are created by the Initiate service (see clause 8.4.1).

8.1.3.1 &aaIdentifier

This field identifies the application association. Since the value of this field is never communicated, its form is a
local matter.

8.1.3.2 &client

This field serves to identify the MMS client with whom the association has been established. A definition
appropriate for the OSI environment is provided in annex A.

8.1.3.3 &abstractSyntax

This field identifies the abstract syntax in use on this association.

8.1.3.4 &authenticationValue

This field is the value of the Authentication Value as presented by the MMS client at application association
establishment. The form of this field is governed by the facilities of the network supporting the MMS association
(see annex A).

8.1.3.5 &Transactions

This field is the set of Transaction objects associated with this application association. The maximum number of
objects in this set is established by the Initiate service. At any given time, the set may be empty, indicated by the
OPTIONAL attribute.

8.1.3.6 &NamedVariables

This field identifies the Named Variable objects whose name scope is AA-specific. This field is present only if the
vnam parameter CBB has been negotiated. Named Variables are described in clause 14.

8.1.3.7 &NamedVariableLists

This field identifies the Named Variable List objects whose name scope is application-specific. This field is present
only if the vnam and vlis parameter CBBs have been negotiated. Named Variables Lists are described in clause
14.

8.1.3.8 &NamedTypes

This field identifies the Named Type objects whose name scope is AA-specific. This field is present only if the
vnam parameter CBB has been negotiated. Named Types are described in clause 14.

8.1.3.9 &EventConditions

This field identifies the Event Condition objects whose name scope is AA-specific. Event Conditions are described
in clause 19 and event processing is described in clause 18.

8.1.3.10 &EventActions

This field identifies the Event Action objects whose name scope is AA-specific. Event Actions are described in
clause 20 and event processing is described in clause 18.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved40

8.1.3.11 &EventEnrollments

This field identifies the Event Enrollment objects whose name scope is AA-specific. Event Enrollments are
described in clause 21 and event processing is described in clause 18.

8.1.3.12 &EventConditionLists

This field identifies the Event Condition List objects whose name scope is AA-specific. Event Condition Lists are
described in clause 22 and event processing is described in clause 18.

8.1.3.13 &Journals

This field identifies the Journal objects whose name scope is AA-specific. Journals are described in clause 23.

8.1.3.14 &services

This field identifies the MMS services supported on this association. Each bit identifier corresponds to a specific
service, either confirmed or unconfirmed. The value of this field is established as part of the Initiate procedure (see
8.2).

 ServiceSupportOptions ::= BIT STRING {
status (0),
getNameList (1),
identify (2),
rename (3),
read (4),
write (5),
getVariableAccessAttributes (6),
defineNamedVariable (7),

 -- bit 8 is reserved for use of a service defined in annex E
defineScatteredAccess (8),

 -- bit 9 is reserved for use of a service defined in annex E
getScatteredAccessAttributes (9),
deleteVariableAccess (10),
defineNamedVariableList (11),
getNamedVariableListAttributes (12),
deleteNamedVariableList (13),
defineNamedType (14),
getNamedTypeAttributes (15),
deleteNamedType (16),
input (17),
output (18),
takeControl (19),
relinquishControl (20),
defineSemaphore (21),
deleteSemaphore (22),
reportSemaphoreStatus (23),
reportPoolSemaphoreStatus (24),
reportSemaphoreEntryStatus (25),
initiateDownloadSequence (26),
downloadSegment (27),
terminateDownloadSequence (28),
initiateUploadSequence (29),
uploadSegment (30),
terminateUploadSequence (31),
requestDomainDownload (32),
requestDomainUpload (33),
loadDomainContent (34),
storeDomainContent (35),
deleteDomain (36),
getDomainAttributes (37),
createProgramInvocation (38),
deleteProgramInvocation (39),
start (40),
stop (41),
resume (42),
reset (43),
kill (44),
getProgramInvocationAttributes (45),
obtainFile (46),
defineEventCondition (47),
deleteEventCondition (48),
getEventConditionAttributes (49),
reportEventConditionStatus (50),
alterEventConditionMonitoring (51),
triggerEvent (52),
defineEventAction (53),

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 41

deleteEventAction (54),
getEventActionAttributes (55),
reportEventActionStatus (56),
defineEventEnrollment (57),
deleteEventEnrollment (58),
alterEventEnrollment (59),
reportEventEnrollmentStatus (60),
getEventEnrollmentAttributes (61),
acknowledgeEventNotification (62),
getAlarmSummary (63),
getAlarmEnrollmentSummary (64),
readJournal (65),
writeJournal (66),
initializeJournal (67),
reportJournalStatus (68),
createJournal (69),
deleteJournal (70),
getCapabilityList (71),

 -- bit 72 is reserved for use of a service defined in annex D
fileOpen (72),

 -- bit 73 is reserved for use of a service defined in annex D
fileRead (73),

 -- bit 74 is reserved for use of a service defined in annex D
fileClose (74),

 -- bit 75 is reserved for use of a service defined in annex D
fileRename (75),

 -- bit 76 is reserved for use of a service defined in annex D
fileDelete (76),

 -- bit 77 is reserved for use of a service defined in annex D
fileDirectory (77),
unsolicitedStatus (78),
informationReport (79),
eventNotification (80),
attachToEventCondition (81),
attachToSemaphore (82),
conclude (83),
cancel (84),
getDataExchangeAttributes (85),

-- Shall not appear in minor version one
exchangeData (86),

-- Shall not appear in minor version one
defineAccessControlList (87),

-- Shall not appear in minor version one or two
getAccessControlListAttributes (88),

-- Shall not appear in minor version one or two
reportAccessControlledObjects (89),

-- Shall not appear in minor version one or two
deleteAccessControlList (90),

-- Shall not appear in minor version one or two
alterAccessControl (91),

-- Shall not appear in minor version one or two
reconfigureProgramInvocation (92) } (SIZE(93))

8.1.3.15 ¶meters

This field identifies the MMS parameter CBBs that have been negotiated in the Initiate procedure (see 8.2).

 ParameterSupportOptions ::= BIT STRING {
str1 (0),
str2 (1),
vnam (2),
valt (3),
vadr (4),

 -- bit 5 is reserved for the services defined in Annex E.
vsca (5),
tpy (6),
vlis (7),

 -- bit 8 is reserved
 -- bit 9 is reserved

cei (10),
aco (11),
sem (12),
csr (13),
csnc (14),
csplc (15),
cspi (16),
char (17) } (SIZE(18))

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved42

8.1.3.15.1 str1

The str1 parameter conformance building block shall establish the validity of the ARRAY value for the Kind Of
Type parameter of the Type Description parameter, the INDEX and INDEX-RANGE value for the Access
Selection parameters of the Alternate Access parameter (if valt is supported) and the ARRAY value for the Kind
Of Data parameter of the Data parameter.

If str1 is supported, these values, and the parameters that they select, are valid and the &nest field shall specify a
value greater than zero. Otherwise, these values, and the parameters that they select, are invalid.

8.1.3.15.2 str2

The str2 parameter conformance building block shall establish the validity of the STRUCTURE value for the
Kind Of Type parameter of the Type Description parameter, the COMPONENT value for the Access Selection
parameters of the Alternate Access parameter (if valt is supported) and the STRUCTURE value for the Kind Of
Data parameter of the Data parameter.

If str2 is supported, these values, and the parameters that they select, are valid and the &nest field shall specify a
value greater than zero. Otherwise, these values, and the parameters that they select, are invalid.

8.1.3.15.3 vnam

The vnam parameter conformance building block shall establish the validity of the NAMED value for the Kind Of
Variable parameter of the Variable Specification parameter and the NAMED value for the Kind Of Variable
parameter of the GetVariableAccessAttributes service's Argument parameter.

If vnam is supported, these values and the parameters that they select are valid. Otherwise, these values and the
parameters that they select are invalid.

8.1.3.15.4 valt

The valt parameter conformance building block shall establish the validity of the Alternate Access and
Component Name parameters, wherever they occur in a service table.

If valt is supported, these parameters are valid. Otherwise, these parameters are invalid.

8.1.3.15.5 vadr

The vadr parameter conformance building block shall establish the validity of the Address parameter, wherever it
occurs in a service table, and the validity of the UNNAMED and SINGLE values for the Kind Of Variable
parameter of the Variable Specification parameter, the UNNAMED value for the Kind Of Variable parameter of the
GetVariableAccessAttributes service's Argument parameter, and the value true for the Packed parameter of the
Array and Structure parameters of the Type Description parameter.

If vadr is supported, the Address parameter and the specified values and the parameters that they select are valid.
Otherwise, the Address parameter and the specified values and the parameters that they select are invalid.

8.1.3.15.6 vsca

The vsca CBB identifies facilities and services present in the first edition but not included in the object model in
clause 7. These facilities and services are described in annex E.

8.1.3.15.7 tpy

The tpy parameter conformance building block shall indicate the functional capability to communicate with a third
party. The third party may be an MMS client, an MMS server, or any other system. This third party system may be
used by the MMS server to obtain resources required to execute an MMS service request. The choice of the
method of communication with the third party is a local matter.

If tpy is supported, this value and the parameters that it selects are valid. Otherwise, this value and the parameters
that it selects are invalid.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 43

8.1.3.15.8 vlis

The vlis parameter conformance building block shall establish the validity of the Variable List Name value for
the Kind of Access parameter of the Variable Access Specification parameter.

If vlis is supported, this value and the parameters that it selects are valid. Otherwise, this value and the
parameters that it selects are invalid.

8.1.3.15.9 cei

The cei parameter conformance building block shall establish the validity of the Evaluation Interval of the
AlterEventConditionMonitoring service's Argument parameter.

If cei is supported, this parameter is valid. Otherwise, it is invalid.

8.1.3.15.10 aco

The aco parameter conformance building block shall establish the validity of the Access Control parameter,
wherever it occurs in a service table.

If aco is supported, this parameter is valid. Otherwise, it is invalid.

8.1.3.15.11 sem

The sem parameter conformance building block shall establish the validity of the Meaning parameter in the
GetVariableAccessAttributes and GetNamedTypeAttributes services' Result(+) parameter.

If sem is supported, this parameter is valid. Otherwise, it is invalid.

8.1.3.15.12 csr

The csr parameter conformance building block serves to identify parameters of extensions to MMS services first
introduced in ISO/IEC 9506-3.

If csr is supported, these parameters and the parameters they select are valid. Otherwise, these parameters and
the parameters they select are invalid.

8.1.3.15.13 csnc

The csnc parameter conformance building block serves to identify parameters of extensions to MMS services
first introduced in ISO/IEC 9506-4.

If csnc is supported, these parameters and the parameters they select are valid. Otherwise, these parameters and
the parameters they select are invalid.

8.1.3.15.14 csplc

The csplc parameter conformance building block serves to identify parameters of extensions to MMS services
first introduced in ISO/IEC 9506-5.

If csplc is supported, these parameters and the parameters they select are valid. Otherwise, these parameters and
the parameters they select are invalid.

8.1.3.15.15 cspi

The cspi parameter conformance building block serves to identify parameters of extensions to MMS services
first introduced in ISO/IEC 9506-6.

If cspi is supported, these parameters and the parameters they select are valid. Otherwise, these parameters and
the parameters they select are invalid.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved44

8.1.3.15.16 char

The char parameter conformance building block serves to identify the use of an extended (UNICODE) character
set for identifier and strings.

If char is supported, all strings and identifiers can use the full character set of UTF8String data type; otherwise,
they are restricted to a subset of the VisibleString data type.

8.1.3.16 &nest

This field shall specify the maximum number of non-leaf nodes of a type tree between the root node and the most
deeply nested leaf node. This value shall be zero if neither str1 nor str2 are supported. Otherwise, it shall be
greater than zero and shall apply equally to str1 and str2.

8.1.3.17 &Ulsms

This field identifies zero or more Upload State Machines objects. Upload State Machines are described in clause
11.

8.1.3.18 &extendedServices

This field identifies the extended MMS services supported on this association. This field is present only if one or
more of the parameter CBB's csr, csnc, csplc or cspi have been negotiated. The value of this field is
established by the Initiate procedure (see 8.2).

 AdditionalSupportOptions ::= BIT STRING {
IF (csr)

vMDStop (0),
vMDReset (1),
select (2),
alterProgramInvocationAttributes (3)

ENDIF
IF (cspi)
, initiateUnitControlLoad (4),

unitControlLoadSegment (5),
unitControlUpload (6),
startUnitControl (7),
stopUnitControl (8),
createUnitControl (9),
addToUnitControl (10),
removeFromUnitControl (11),
getUnitControlAttributes (12),
loadUnitControlFromFile (13),
storeUnitControlToFile (14),
deleteUnitControl (15),
defineEventConditionList (16),
deleteEventConditionList (17),
addEventConditionListReference (18),
removeEventConditionListReference (19),
getEventConditionListAttributes (20),
reportEventConditionListStatus (21),
alterEventConditionListMonitoring (22)

ENDIF
} (SIZE(23))

8.1.3.19 &extendedParameters

This field identifies the extended MMS parameter CBBs that have been negotiated in the Initiate procedure (see
8.2). This field is present only if the cspi parameter CBB has been negotiated.

 AdditionalCBBOptions ::= BIT STRING {
des (0),
dei (1),
recl (2) } (SIZE(3))

8.1.3.19.1 des

The des parameter conformance building block shall establish the validity of the string form of the Display
Enhancement parameter, wherever it occurs in the service tables.

If des is supported, this parameter is valid. Otherwise, it is invalid.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 45

8.1.3.19.2 dei

The dei parameter conformance building block shall establish the validity of the integer form of the Display
Enhancement parameter, wherever it occurs in the service tables.

If dei is supported, this parameter is valid. Otherwise, it is invalid.

8.1.3.19.3 recl

The recl parameter conformance building block shall establish the validity of the List of Event Condition List
names parameter, wherever it occurs in the service tables.

If recl is supported, this parameter is valid. Otherwise, it is invalid.

8.2 Initiate service

The Initiate service shall be used to establish the MMS environment and to allow the communicating MMS-users
to exchange information regarding their capabilities and requirements. The Initiate service shall complete
successfully before any other services may be carried out between a pair of MMS-users in the MMS environment.
Annex A describes how the MMS Initiate service makes use of the underlying communication services.

8.2.1 Structure

The structure of the component service primitives is shown in Table 10.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Local Detail Calling
 Proposed Max Serv Outstanding Calling
 Proposed Max Serv Outstanding Called
 Proposed Data Structure Nesting Level
 Proposed Version Number
 Proposed Parameter CBB
 Proposed Additional Parameter CBB
 Services Supported Calling
 Extended Services Supported Calling

Result(+)
 Local Detail Called
 Negotiated Max Serv Outstanding Calling
 Negotiated Max Serv Outstanding Called
 Negotiated Data Structure Nesting Level
 Negotiated Version Number
 Negotiated Parameter CBB
 Negotiated Additional Parameter CBB
 Services Supported Called
 Extended Services Supported Called

Result(-)
 Error Type

M
U
M
M
U
M
M
C
M
C

M
U(=)

M
M
U
M
M
C
M
C

S
U
M
M
U
M
M
C
M
C

S
M

S(=)
U(=)
M(=)
M(=)
U(=)
M(=)
M(=)
C(=)
M(=)
C(=)

S(=)
M(=)

Table 10 - Initiate service

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved46

8.2.1.1 Argument

This parameter shall convey the service specific parameters of the Initiate service request.

For those parameters in the request primitive, the MMS-provider in the calling system may reduce the values
supplied by the calling MMS-user. For those parameters in the indication primitive, the MMS-provider in the
called system may reduce the values from those in the InitiateRequestPDU, except for the Services Supported
Calling and Extended Services Supported Calling parameters. Reductions of the values must follow the rules for
reduction as specified in the parameter descriptions. No other modifications are permitted to these values.

NOTE The purpose of allowing the service providers to reduce values as specified by the user is to provide a mechanism
that may be used to ensure that the values specified by the user do not exceed the capabilities of the service provider.
Implementation of this feature is a local matter.

8.2.1.1.1 Local Detail Calling

When present, this parameter, of type integer, shall represent information about the calling MMS-user's
implementation. The content of this field is a local matter and not a subject for further standardization.

8.2.1.1.2 Proposed Max Serv Outstanding Calling

This parameter, of type integer, shall identify the proposed maximum number of Transaction object instances in
the &Transaction field of the Application Association object created at the calling MMS-user.

The value of this parameter may be reduced by the MMS-provider. The value in the indication primitive shall be
less than or equal to the value in the request primitive. The value in the request or indication primitives shall not
be less than zero.

8.2.1.1.3 Proposed Max Serv Outstanding Called

This parameter, of type integer, shall identify the proposed maximum number of Transaction object instances that
may be created at the called MMS-user in the &Transaction field of the Application Association object.

The value of this parameter may be reduced by the MMS-provider. The value in the indication primitive shall be
less than or equal to the value in the request primitive. The value in the request or indication primitives shall not
be less than zero.

8.2.1.1.4 Proposed Data Structure Nesting Level

This parameter, of type integer, shall indicate the proposed maximum number of levels of nesting supported by
both of the MMS-users that may occur within any data element used in the association. Absence of this parameter
shall indicate an unlimited number of nesting levels.

The request and indication primitives shall specify the maximum nesting level of Type Specification (explicit or
derived) that the calling MMS-user desires to use in the negotiated MMS environment. A value of zero shall
indicate that only simple types are allowed.

The value of this parameter may be reduced by the MMS-provider. The value in the indication primitive shall be
less than or equal to the value in the request primitive.

8.2.1.1.5 Proposed Version Number

This parameter, of type integer, shall contain a number that represents a minor version number of ISO 9506-1 and
ISO 9506-2. The minor version number of this edition of ISO 9506-1 and ISO 9506-2 is that specified in ISO
9506-2, clause 24. This parameter, the Proposed Version Number, is the proposed minor version number to be
used for this instance of communication. Proposal of a number greater than one indicates support on this
application association for all minor versions between one and the number proposed, inclusive.

NOTE Major versions of ISO 9506-1 and ISO 9506-2 are reflected through the definition and registration of distinct abstract
syntaxes. Minor versions are reflected in the minor version number parameter. Minor versions of ISO 9506-1 and
ISO 9506-2 at the same major version level are compatible with major versions of ISO 9506-1 and ISO 9506-2 with
smaller minor version numbers.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 47

The value of this parameter may be reduced by the MMS-provider if it cannot support the requested value. The
value in the indication primitive shall be less than or equal to the value in the request primitive, but not less than
one.

8.2.1.1.6 Proposed Parameter CBB

This parameter, of type bitstring, shall specify the set of parameter conformance building blocks (CBB) that are
proposed to be supported on this application association.

The value of this parameter in the request primitive shall specify the set of Parameter CBBs supported by the
Calling MMS-user.

The value of this parameter in the indication primitive shall specify the intersection of the set of Parameter CBBs
supported by the Calling MMS-user and the set of Parameter CBBs supported by the MMS-provider.

The interpretation of a parameter CBB and assignment to an individual bit of a CBB bitstring type is specified in
8.1.3.15. A value of one in the assigned bit shall indicate support for the corresponding CBB. A value of zero
shall indicate non-support. All bits shall be encoded and any additional bits received shall be ignored.

NOTE The set of Parameter CBBs used in this parameter only contains those that can be represented by a binary value. The
value of the &nest field is conveyed in the Proposed Data Structure Nesting Level parameter.

8.2.1.1.7 Proposed Additional Parameter CBB

This parameter, of type bitstring, shall specify the set of additional parameter conformance building blocks (CBB)
that are proposed to be supported on this application association. This parameter shall be present only if the cspi
parameter CBB has been offered in the Proposed Parameter CBB parameter.

The value of this parameter in the request primitive shall specify the set of Additional Parameter CBBs supported
by the Calling MMS-user.

The value of this parameter in the indication primitive shall specify the intersection of the set of Additional
Parameter CBBs supported by the Calling MMS-user and the set of Additional Parameter CBBs supported by the
MMS-provider.

The interpretation of an additional parameter CBB and assignment to an individual bit of a CBB bitstring type is
specified in 8.1.3.19. A value of one in the assigned bit shall indicate support for the corresponding CBB. A
value of zero shall indicate non-support. All bits shall be encoded and any additional bits received shall be
ignored.

8.2.1.1.8 Services Supported Calling

This parameter, of type bitstring, shall specify support by the Calling MMS-user of a set of services for use on this
application association.

The value of the parameter in the indication primitive shall specify the intersection of the set of services supported
by the Calling MMS-user and the set of services supported by the MMS-provider.

The assignment of a service to an individual bit of the bitstring type is specified in 8.1.3.14. A value of one in the
assigned bit shall indicate support for the corresponding service. A value of zero shall indicate non-support. All
bits shall be encoded and any additional bits received shall be ignored.

Support for confirmed services shall be defined as the ability to receive a request indication and execute the
service procedure defined for the responder role. Support of unconfirmed services shall be defined as the ability to
accept an indication primitive and to pass the parameters to the service interface. Support of a modifier shall be
defined as the ability to accept an indication primitive that contains the Modifier and to execute properly the
service procedure defined for the Modifier.

If a confirmed service, an unconfirmed service, or Modifier is supported, a Reject PDU shall not be issued on
receipt of that service or modified service, except in the case of a protocol error. If a confirmed service, an
unconfirmed service, or modifier is not supported, a Reject PDU shall be issued on receipt of that service request
or modified service request with a reject code of "UNRECOGNIZED SERVICE".

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved48

8.2.1.1.9 Extended Services Supported Calling

This parameter, of type bitstring, shall specify support by the Calling MMS-user of a set of extended services for
use on this application association. This parameter shall not be present unless either the csr parameter CBB or
the cspi parameter CBB (or both) have been offered in the Proposed Parameter CBB parameter.

The value of the parameter in the indication primitive shall specify the intersection of the set of services supported
by the Calling MMS-user and the set of services supported by the MMS-provider.

The assignment of a service to an individual bit of the bitstring type is specified in 8.1.3.18. A value of one in the
assigned bit shall indicate support for the corresponding service. A value of zero shall indicate non-support. All
bits shall be encoded and any additional bits received shall be ignored.

Support for confirmed services shall be defined as the ability to receive a request indication and execute the
service procedure defined for the responder role.

If a confirmed service is supported, a Reject PDU shall not be issued on receipt of that service, except in the case
of a protocol error. If a confirmed service is not supported, a Reject PDU shall be issued on receipt of that service
request with a reject code of "UNRECOGNIZED SERVICE".

8.2.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

8.2.1.2.1 Local Detail Called

When present, this parameter, of type integer, shall represent information about the Called MMS-User's
implementation. The content of this field is a local matter and not a subject for further standardization.

8.2.1.2.2 Negotiated Max Serv Outstanding Calling

This parameter, of type integer, shall identify the maximum number of Transaction object instances that may be
created at the calling MMS-user in the &Transaction field of the Application Association object.

The negotiated maximum number of services outstanding in the response primitive shall be less than or equal to
the Proposed Max Serv Outstanding Calling parameter in the indication primitive, but shall not be less than zero.

8.2.1.2.3 Negotiated Max Serv Outstanding Called

This parameter, of type integer, shall identify the maximum number of Transaction object instances that may be
created at the called MMS-user in the &Transaction field of the Application Association object.

The negotiated maximum number of services outstanding in the response primitive shall be less than or equal to
the Proposed Max Serv Outstanding Called parameter in the indication primitive, but shall not be less than zero.

8.2.1.2.4 Negotiated Data Structure Nesting Level

This parameter, of type integer, shall indicate the maximum number of levels of nesting supported by both of the
MMS-users that may occur within any data element used in the association. Absence of this parameter shall
indicate an unlimited nesting level.

This parameter shall be equal to or less than the Proposed Data Structure Nesting level parameter in the indication
primitive, but shall not be less than zero.

The response and confirmation primitives shall specify the maximum nesting level of Type Specification (explicit
or derived) that shall be used in the negotiated MMS environment. A value of zero shall indicate that only simple
types are allowed.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 49

8.2.1.2.5 Negotiated Version Number

This parameter, of type integer, shall contain a number that represents a minor version number of ISO 9506-1 and
ISO 9506-2. The minor version number of this edition of ISO 9506-1 and ISO 9506-2 is that specified in ISO
9506-2, clause 24. This parameter, the Negotiated Version Number, shall be the minor version number that will
be used for this instance of communication. This number shall be less than or equal to the Proposed Version
Number parameter in the request primitive. It shall not be less than one.

NOTE Major versions of ISO 9506 are reflected through the definition and registration of distinct abstract syntaxes. Minor
versions are reflected in the minor version number parameter. Minor versions of ISO 9506-1 and ISO 9506-2 at the
same major version level are compatible with versions of ISO 9506-1 and ISO 9506-2 with smaller minor version
numbers.

8.2.1.2.6 Negotiated Parameter CBB

This parameter, of type bitstring, shall specify the negotiated set of parameter conformance building blocks (CBB)
that are to be supported on this application association.

The value of this parameter in the response primitive shall specify the intersection of the set of Parameter CBBs
supported by the Called MMS-user and the set of Parameter CBBs specified by the Proposed Parameter CBB
parameter in the indication primitive.

The interpretation of a parameter CBB and assignment to an individual bit of a CBB bitstring type is specified in
8.1.3.15. A value of one in the assigned bit shall indicate support for the corresponding CBB. A value of zero
shall indicate non-support. All bits shall be encoded and any additional bits received shall be ignored.

NOTE The set of Parameter CBBs used in this parameter only contains those that can be represented by a binary value. The
value of the &nest field is conveyed in the Negotiated Data Structure Nesting Level parameter.

8.2.1.2.7 Negotiated Additional Parameter CBB

This parameter, of type bitstring, shall specify the negotiated set of additional parameter conformance building
blocks (CBB) that are to be supported on this application association. This parameter shall be present only if the
cspi parameter CBB has been negotiated in the Negotiated Parameter CBB parameter.

The value of this parameter in the response primitive shall specify the intersection of the set of Additional
Parameter CBBs supported by the Called MMS-user and the set of Additional Parameter CBBs specified by the
Proposed Additional Parameter CBB parameter in the indication primitive.

The assignment of a Parameter CBB to an individual bit of a CBB bitstring type is specified in 8.1.3.19. A value
of one in the assigned bit shall indicate support for the corresponding CBB. A value of zero shall indicate
non-support. All bits shall be encoded and any additional bits received shall be ignored.

8.2.1.2.8 Services Supported Called

This parameter, of type bitstring, shall specify support by the Called MMS-user of a set of services for use on this
application association.

The value of the parameter in the confirmation primitive shall specify the intersection of the set of services
supported by the Called MMS-user and the set of services supported by the MMS-provider.

The assignment of a service to an individual bit of the bitstring type is specified in 8.1.3.14. A value of one in the
assigned bit shall indicate support for the corresponding service. A value of zero shall indicate non-support. All
bits shall be encoded and any additional bits received shall be ignored.

Support for confirmed services shall be defined as the ability to receive an indication primitive and properly
execute the service procedure defined for the responder role. Support of unconfirmed services shall be defined as
the ability to accept an indication primitive and to pass the parameters to the service interface. Support of a
modifier shall be defined as the ability to accept an indication primitive that contains the Modifier and to properly
execute the service procedure defined for the Modifier.

If a confirmed service, an unconfirmed service, or Modifier is supported, a Reject PDU shall not be issued on
receipt of that service or modified service, except in the case of a protocol error. If a confirmed service, an

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved50

unconfirmed service, or modifier is not supported, a Reject PDU shall be issued on receipt of that service or
modified service with a reject code of "UNRECOGNIZED SERVICE".

8.2.1.2.9 Extended Services Supported Called

This parameter, of type bitstring, shall specify support by the Called MMS-user of a set of additional services for
use on this application association.

The value of the parameter in the confirmation primitive shall specify the intersection of the set of additional
services supported by the Called MMS-user and the set of additional services supported by the MMS-provider.

The assignment of an additional service to an individual bit of the bitstring type is specified in 8.1.3.18. A value
of one in the assigned bit shall indicate support for the corresponding service. A value of zero shall indicate
non-support. All bits shall be encoded and any additional bits received shall be ignored.

Support for confirmed services shall be defined as the ability to receive an indication primitive and properly
execute the service procedure defined for the responder role.

If a confirmed service is supported, a Reject PDU shall not be issued on receipt of that service, except in the case
of a protocol error. If a confirmed service is not supported, a Reject PDU shall be issued on receipt of that service
with a reject code of "UNRECOGNIZED SERVICE".

8.2.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

8.2.2 Service Procedure

The called MMS-user shall issue a response primitive indicating success in the Result parameter if that MMS-user
is willing to accept communications in the MMS environment under the constraints identified in the indication
primitive, or if alternate values can be proposed (according to the negotiation rules), with the requesting
MMS-user. Otherwise, a response primitive indicating the Result(-) parameter shall be issued.

Successful execution of the Initiate service shall result in the establishment of the MMS environment. The MMS
environment shall only be established through the use of the Initiate service. The Initiate service shall not be used
within an established MMS environment. If an Initiate Request PDU is received on an association where an
established MMS environment exists, a Reject PDU shall be issued with a Reject PDU Type of PDU-ERROR and
a Reject Code of ILLEGAL-ACSE-MAPPING.

As a result of a successful execution of the Initiate service, an Application Association object shall be created and
initialised as follows:

a) The &aaIdentifier field shall be assigned an unique integer.

b) The &client field shall be set to the Application Reference of the peer MMS-user.

c) The &abstractSyntax field shall be set to the abstract syntax used for communication.

d) The &authenticationValue field shall be set to the parameter of M-ASSOCIATE service, if present;
otherwise it shall be empty.

e) The &Transactions field shall be empty.

f) The &services field shall be set to the value of the Services Supported Calling parameter of the
Initiate.indication service primitive at the called MMS-user or’ed with the value of the Services Supported
Called parameter of the Initiate.confirm(+) service primitive at the calling MMS-user.

g) The ¶meters field shall be set to the value of the Negotiated Parameter CBB parameter of the
Initiate.confirm service primitive at both the calling and the called MMS-users.

h) The &nest field shall be set to the value of the Negotiated Data Structure Nesting Level parameter of the
Initiate.confirm service primitive at both the calling and the called MMS-users.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 51

i) The extendedServices field shall be set to the value of the Extended Services Supported Calling parameter
of the Initiate.indication service primitive at the called MMS-user or’ed with the value of the Extended
Services Supported Called parameter of the Initiate.confirm(+) service primitive at the calling MMS-user.

j) The &extendedParameters field shall be set to the value of the Negotiated Additional Parameter CBB
parameter of the Initiate.confirm service primitive at both the calling and the called MMS-users.

k) Other object set fields of the Application Association shall be initialised to empty or as reported in the
Configuration and Initialisation (see ISO 9506-2, clause 25).

8.3 Conclude service

The Conclude service may be used to cause the orderly relinquishing of the MMS environment. An MMS-user
requests the Conclude service to indicate its willingness to disestablish the Application Association. Annex A
describes how the MMS Conclude service makes use of the underlying OSI communication services.

8.3.1 Structure

The structure of the component service primitives is shown in Table 11.

 Parameter Name Req Ind Rep Cnf CBB

Argument

Result(+)

Result(-)
 Error Type

M M(=)

S

S
M

S(=)

S(=)
M(=)

Table 11 - Conclude service

8.3.1.1 Argument

There are no service specific parameters for the Conclude service request.

8.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

8.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

8.3.2 Service Procedure

8.3.2.1 Requesting MMS-user

The requesting MMS-user shall issue a conclude.request service primitive, which begins the Conclude service.
Once this primitive has been issued, the requesting MMS-user shall not issue any further request primitives until a
conclude.confirm service primitive is received from the MMS-provider (except the Abort request primitive, which
may be issued at any time). The requesting MMS-user may continue to issue response primitives in order to
complete service requests from the peer MMS-user.

The requesting MMS-user shall not issue a conclude.request service primitive to a peer MMS-user on an
association if a Domain exists at the requesting MMS-user with a &state field value equal to loading,
complete, incomplete, d1, d2, d3, or d9 and a &aAssociation field indicating this association.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved52

Upon receiving a conclude.confirm service primitive with a Result(+), the requesting MMS-user shall consider the
MMS environment to be terminated, and no further request or response primitives shall be issued by the requesting
MMS-user in the MMS environment on that association.

Upon receiving a conclude.confirm service primitive with a Result(-), the requesting MMS-user shall consider the
MMS Environment to be unaffected, and may continue to issue request or response service primitives in the MMS
environment.

Upon successful completion of the Conclude service, all AA-specific objects at the requesting MMS-user
associated with the terminated MMS environment are released and any defined procedures associated with their
deletion are performed unless other specifications for that object are explicitly stated in this part of ISO 9506.

8.3.2.2 Responding MMS-user

Upon receipt of the conclude.indication service primitive, the responding MMS-user shall issue a
conclude.response service primitive indicating whether or not it accepts the termination of the association before
any other service request primitives may be issued by that MMS-user (except the abort.request service primitive,
which may be issued at any time). The responding MMS-user shall not accept conclusion on an association if it is
awaiting any response from the peer MMS-user for a confirmed service or for the Conclude Service.

A responding MMS-user shall not accept a Conclude attempt on an association if any of the following conditions
exist:

a) The responding MMS-user has received an indication on the association for a confirmed service request
from the peer MMS-user for which it has not yet issued a response;

b) An Upload State Machine exists on the responding MMS-user as a result of a request from the peer
MMS-user on the association;

c) A Domain exists at the responding MMS-user with a &state field value equal to loading, complete, or
incomplete and an &aAssociation field indicating this association.

d) The responding MMS-user has control of a semaphore on the requesting MMS-user on the association;

e) The requesting MMS-user has control of a semaphore on the responding MMS-user on the association.

Upon issuing a conclude.response service primitive with a Result(+) parameter, the MMS Environment shall be
considered terminated. No further request or response primitives shall be issued by the responding MMS-user in
that MMS environment on that association.

Upon issuing a conclude.response service primitive with a Result(-), the MMS environment shall not be affected
and the responding MMS-user may continue to issue request and/or response service primitives.

NOTE 1 The effect of a failed Conclude service confirmation is as if no Conclude request had ever been issued.

Upon successful completion of the Conclude service, all AA-specific objects at the responding MMS-user
associated with the terminated MMS environment are released and any defined procedures associated with their
deletion are performed unless other specifications for that object are explicitly stated in this part of ISO 9506.

NOTE 2 It is possible that both of the peers will initiate a Conclude attempt at or near the same time resulting in failure of
both attempts. If both peers retry the Conclude, on result of failure, this situation could potentially (although very
unlikely) continue indefinitely. Through use of application design, this situation can be avoided. One possible
method is to designate the calling MMS-user as the peer that will initiate the Conclude attempt should this situation
arise.

8.4 Abort service

The Abort service shall be used to relinquish the MMS environment abruptly and without negotiation. The
MMS-user shall issue the abort.request service primitive to indicate that it wishes immediately, and without
negotiation, to discontinue communications in the MMS Environment on the application association. The effect of
the Abort service may be to destroy previously issued requests and/or responses issued by either of the
MMS-users. Annex A describes how the MMS Abort service makes use of the underlying OSI communication
services.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 53

NOTE The abort.indication service primitive may also be generated by the MMS-provider.

8.4.1 Structure

The structure of the component service primitives is shown in Table 12.

 Parameter Name Req Ind CBB

Argument
 Locally Generated

M M
M

Table 12 - Abort service

8.4.1.1 Argument

This parameter shall convey the service specific parameters of the Abort service.

8.4.1.1.1 Locally Generated

This parameter, of type boolean, shall indicate whether the abort request was generated by the system in which the
MMS-user receiving the indication is located (indicated by the value true), or whether the abort request was
received by that system (indicated by the value false). This parameter shall be provided by the MMS-provider.

8.4.2 Service Procedure

In the case of an Abort initiated by the MMS-user, the peer MMS-user shall be notified of the user requested abort
by receipt of an abort.indication service primitive, and the MMS Environment shall be terminated.

In the case of an Abort initiated by the MMS-provider, both MMS-users shall be notified of the provider abort by
receipt of abort.indication primitives (if this is possible), and the MMS Environment shall be terminated.

Upon completion of the Abort service, all AA-specific objects associated with the terminated MMS environment
in both MMS-users are released and any defined procedures associated with their deletion are performed unless
other specifications for that object are explicitly stated in this part of ISO 9506.

8.5 Cancel service

The Cancel service is used by an MMS client to cancel a request that has previously been issued, but has not yet
completed. Only confirmed services may be cancelled (see clause 5).

8.5.1 Structure

The structure of the component service primitives is shown in Table 13.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved54

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Original Invoke ID

Result(+)
 Original Invoke ID

Result(-)
 Original Invoke ID
 Error Type

M
M

M(=)
M(=)

S
M

S
M
M

S(=)
M(=)

S(=)
M(=)
M(=)

Table 13 - Cancel service

8.5.1.1 Argument

This parameter shall convey the service specific parameters for the Cancel service request.

8.5.1.1.1 Original Invoke ID

This parameter, of type integer, shall specify the invoke ID of the service whose cancellation is desired. (An
invoke ID is provided for every confirmed service request primitive, see clause 5.)

8.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

8.5.1.2.1 Original Invoke ID

This parameter, of type integer, shall specify the invoke ID of the service that was cancelled. (An invoke ID is
provided for every confirmed service request primitive, see clause 5.)

8.5.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, shall provide the reason for failure. When failure is indicated, the following parameter shall
be returned.

8.5.1.3.1 Original Invoke ID

This parameter, of type integer, shall specify the invoke ID of the service whose cancellation was desired. (An
invoke ID is provided for every confirmed service request primitive, see clause 5.)

8.5.2 Service Procedure

8.5.2.1 Preconditions

The following conditions shall result in a Response(-) to the Cancel request.

a) the service request identified by the Cancel request has not been received;

b) the service response for this Cancel request has already been issued;

c) the &cancelable field of the Transaction object associated with this service request has been set to false;

d) the service request cannot be cancelled non-destructively, i.e., the service cannot return to a state that is
logically as if the service indication targeted for cancellation had not been received. Destructive

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 55

cancellation is permitted for the Start, Stop, Resume, and Reset Services provided it follows the service
procedures defined for these services.

For these cases, the responding MMS-user shall issue a Cancel response service primitive with the Result(-)
parameter with the appropriate Cancel error codes for the Error Type parameter. The responding MMS-user shall
continue with the original service and eventually return a response, either positive or negative, as appropriate.

8.5.2.2 Action

The service invocation identified shall be cancelled by the responding MMS-user, and a Cancel response primitive
with the Result(+) parameter shall be issued. The responding MMS-user shall also issue a response primitive with
a Result(-) parameter for the cancelled service indicating the SERVICE-PREEMPT Error Class with an Error
Code of CANCEL. The state of the responder shall then appear logically as if the service targeted for cancellation
had not been requested, unless otherwise stated in the service procedure for the cancelled service. Additional
limitations on requesting the cancel service are specified in ISO 9506-2, clause 6.

8.6 Reject service

The Reject service is a provider-initiated service that is used to inform the MMS-users of the occurrence of a
protocol error. A definition of a protocol error may be found in ISO 9506-2, clause 6.

8.6.1 Structure

The structure of the component service primitives is shown in Table 14.

 Parameter Name Ind CBB

 Detected Here
 Original Invoke ID
 Reject PDU Type
 Reject Code

M
C
M
M

Table 14 - Reject service

8.6.1.1 Detected Here

This parameter, of type boolean, shall indicate whether the protocol error that results in the Reject service was
detected at the local end or remote end of the application association. If true, the protocol error was detected at the
local end; if false, the error was detected at the remote end.

NOTE Handling of local error conditions between an MMS-user and MMS-provider is a local matter.

8.6.1.2 Original Invoke ID

This parameter, of type integer, shall indicate the original invoke ID of the PDU that was found to be in error. Its
presence is conditional on whether the invoke ID could be determined. If there is no invoke ID specified in the
PDU being rejected, this parameter shall not be present.

8.6.1.3 Reject PDU Type

This parameter, of type integer, shall indicate the type of the PDU that caused the protocol error. The value
PDU-ERROR shall be used when the PDU being rejected is not a syntactically valid MMS PDU. The possible
values are as follows:

CONFIRMED-REQUESTPDU
CONFIRMED-RESPONSEPDU
CONFIRMED-ERRORPDU
UNCONFIRMEDPDU
PDU-ERROR

CANCEL-REQUESTPDU
CANCEL-RESPONSEPDU
CANCEL-ERRORPDU
CONCLUDE-REQUESTPDU
CONCLUDE-RESPONSEPDU

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved56

CONCLUDE-ERRORPDU

8.6.1.4 Reject Code

This parameter, of type integer, shall indicate additional information regarding the reason for the Reject within a
given Reject PDU Type parameter value. The possible values for this parameter are given below under each
possible Reject PDU Type parameter value.

8.6.1.4.1 Codes for CONFIRMED-REQUESTPDU

8.6.1.4.1.1 OTHER

This code shall be used for errors other than those identified in this part of ISO 9506 for this Reject PDU type.

8.6.1.4.1.2 UNRECOGNIZED-SERVICE

This code shall be used when the service requested is not supported or is not recognized.

8.6.1.4.1.3 UNRECOGNIZED-MODIFIER

This code shall be used when a modifier requested is not supported or is not recognized.

8.6.1.4.1.4 INVALID-INVOKEID

This code shall be used when an invoke ID does not meet the requirements of this International Standard

8.6.1.4.1.5 INVALID-ARGUMENT

This code shall be used when a service argument does not meet the requirements of this part of ISO 9506.

8.6.1.4.1.6 INVALID-MODIFIER

This code shall be used when a service modifier does not meet the requirements of this part of ISO 9506.

8.6.1.4.1.7 MAX-SERV-OUTSTANDING-EXCEEDED

This code shall be used when the negotiated maximum number of confirmed services that may be outstanding is
exceeded by a confirmed service request that is received.

8.6.1.4.1.8 MAX-RECURSION-EXCEEDED

This code shall be used when the PDU received exceeds the negotiated maximum data structure nesting level.

8.6.1.4.1.9 VALUE-OUT-OF-RANGE

This code shall be used when the PDU received contains one or more parameters whose values exceed the range
allowed for those parameters by this part of ISO 9506 .

8.6.1.4.2 Codes for CONFIRMED-RESPONSEPDU

8.6.1.4.2.1 OTHER

This code shall be used for errors other than those identified in this part of ISO 9506 for this Reject PDU type.

8.6.1.4.2.2 UNRECOGNIZED-SERVICE

This code shall be used when the service specified is not supported, is not recognized, or is not the same service
that was requested with the invoke ID specified in the PDU.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 57

8.6.1.4.2.3 INVALID-INVOKEID

This code shall be used when an invoke ID does not meet the requirements of this International Standard, or no
confirmed service has been requested for the specified invoke ID.

8.6.1.4.2.4 INVALID-RESULT

This code shall be used when a service result does not meet the requirements of this part of ISO 9506.

8.6.1.4.2.5 MAX-RECURSION-EXCEEDED

This code shall be used when the PDU received exceeds the negotiated maximum data structure nesting level.

8.6.1.4.2.6 VALUE-OUT-OF-RANGE

This code shall be used when the PDU received contains one or more parameters whose values exceed the range
allowed for those parameters by this part of ISO 9506.

8.6.1.4.3 Codes for CONFIRMED-ERRORPDU

8.6.1.4.3.1 OTHER

This code shall be used for errors other than those identified in this part of ISO 9506 for this Reject PDU type.

8.6.1.4.3.2 UNRECOGNIZED-SERVICE

This code shall be used when the service specified is not supported, is not recognized, or is not the same service
that was requested with the invoke ID specified in the PDU.

8.6.1.4.3.3 INVALID-INVOKEID

This code shall be used when an invoke ID does not meet the requirements of this International Standard, or no
confirmed service has been requested for the specified invoke ID.

8.6.1.4.3.4 INVALID-SERVICEERROR

This code shall be used when a service error does not meet the requirements of this part of ISO 9506.

8.6.1.4.3.5 VALUE-OUT-OF-RANGE

This code shall be used when the PDU received contains one or more parameters whose values exceed the range
allowed for those parameters by this part of ISO 9506.

8.6.1.4.4 Codes for UNCONFIRMEDPDU

8.6.1.4.4.1 OTHER

This code shall be used for errors other than those identified in this part of ISO 9506 for this Reject PDU type.

8.6.1.4.4.2 UNRECOGNIZED-SERVICE

This code shall be used when the service specified is not supported or is not recognized.

8.6.1.4.4.3 INVALID-ARGUMENT

This code shall be used when a service argument does not meet the requirements of this part of ISO 9506.

8.6.1.4.4.4 MAX-RECURSION-EXCEEDED

This code shall be used when the PDU received exceeds the negotiated maximum data structure nesting level.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved58

8.6.1.4.4.5 VALUE-OUT-OF-RANGE

This code shall be used when the PDU received contains one or more parameters whose values exceed the range
allowed for those parameters by this part of ISO 9506.

8.6.1.4.5 Codes for PDU-ERROR

8.6.1.4.5.1 UNKNOWN-PDU-TYPE

This code shall be used when the PDU type received is not recognized or is not supported.

8.6.1.4.5.2 INVALID-PDU

This code shall be used when the PDU received is syntactically incorrect, and further diagnostics cannot be
provided due to the severity of the error.

8.6.1.4.5.3 ILLEGAL-ACSE-MAPPING

This code shall be used when the PDU type received is not properly mapped to an ACSE service primitive.

8.6.1.4.6 Codes for CANCEL-REQUESTPDU

8.6.1.4.6.1 OTHER

This code shall be used for errors other than those identified in this part of ISO 9506 for this Reject PDU type.

8.6.1.4.6.2 INVALID-INVOKEID

This code shall be used when an invoke ID does not meet the requirements of this International Standard.

8.6.1.4.7 Codes for CANCEL-RESPONSEPDU

8.6.1.4.7.1 OTHER

This code shall be used for errors other than those identified in this part of this part of ISO 9506 for this Reject
PDU type.

8.6.1.4.7.2 INVALID-INVOKEID

This code shall be used when an invoke ID does not meet the requirements of this International Standard, or no
Cancel service has been requested for the specified invoke ID.

8.6.1.4.8 Codes for CANCEL-ERRORPDU

8.6.1.4.8.1 OTHER

This code shall be used for errors other than those identified in this part of ISO 9506 for this Reject PDU type.

8.6.1.4.8.2 INVALID-INVOKEID

This code shall be used when an invoke ID does not meet the requirements of this International Standard, or no
Cancel service has been requested for the specified invoke ID.

8.6.1.4.8.3 INVALID-SERVICEERROR

This code shall be used when a service error does not meet the requirements of this part of ISO 9506.

8.6.1.4.8.4 VALUE-OUT-OF-RANGE

This code shall be used when the PDU received contains one or more parameters whose values exceed the range
allowed for those parameters by this part of ISO 9506.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 59

8.6.1.4.9 Codes for CONCLUDE-REQUESTPDU

8.6.1.4.9.1 OTHER

This code shall be used for errors other than those identified in this part of ISO 9506 for this Reject PDU type.

8.6.1.4.9.2 INVALID-ARGUMENT

This code shall be used when the argument for the request does not meet the requirements of this part of ISO
9506.

8.6.1.4.10 Codes for CONCLUDE-RESPONSEPDU

8.6.1.4.10.1 OTHER

This code shall be used for errors other than those identified in this part of ISO 9506 for this Reject PDU type.

8.6.1.4.10.2 INVALID-RESULT

This code shall be used when the service result does not meet the requirements of this part of ISO 9506.

8.6.1.4.11 Codes for CONCLUDE-ERRORPDU

8.6.1.4.11.1 OTHER

This code shall be used for errors other than those identified in this part of ISO 9506 for this Reject PDU type.

8.6.1.4.11.2 INVALID-SERVICEERROR

This code shall be used when a service error does not meet the requirements of this part of ISO 9506.

8.6.1.4.11.3 VALUE-OUT-OF-RANGE

This code shall be used when the PDU received contains one or more parameters whose values exceed the range
allowed for those parameters by this part of ISO 9506.

8.6.2 Service Procedure

If an MMS-provider receives a RejectPDU it shall issue a reject.indication service primitive to the MMS-user.
The MMS-user may, as a local matter, use the Abort service to terminate the MMS environment abruptly.

An MMS provider shall be capable of issuing a RejectPDU if it receives a PDU that constitutes a protocol error.

9 Conditioned service response

9.1 Introduction and Models

This clause provides a model for the following object:

ACCESS-CONTROL-LIST

This clause specifies the following services:

DefineAccessControlList
GetAccessControlListAttributes
ReportAccessControlledObjects

DeleteAccessControlList
ChangeAccessControl

This clause provides facilities in MMS that allow the specification of conditions under which certain MMS
services are required to fail. Such facilities may be required, for example, to allow use of some MMS services by
one client to the exclusion of other clients. This clause is consistent with the general MMS specification that does

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved60

not require any MMS service request to succeed, but may require a service request to fail. Success is always
dependent on conditions beyond the scope of MMS; failure may be required by the MMS service procedures.

The facilities of the Access Control List have been designed to permit interoperation with implementations
conforming to earlier versions of this standard. The external manifestations of the Access Control List objects are
(1) the reporting of the name of the Access Control List object referenced by a given object in its
GetAccessControlListAttributes service, and (2) the use of the additional services specified in this clause. The
first manifestation is governed by the negotiation of the aco parameter CBB; the second is governed by the
corresponding service CBBs.

9.1.1 Access Control List Object Model

This clause introduces the model of the Access Control List object.

 ACCESS-CONTROL-LIST ::= CLASS {
&name Identifier,
&accessControl Identifier,
&readAccessCondition [0] AccessCondition OPTIONAL,
&storeAccessCondition [1] AccessCondition OPTIONAL,
&writeAccessCondition [2] AccessCondition OPTIONAL,
&loadAccessCondition [3] AccessCondition OPTIONAL,
&executeAccessCondition [4] AccessCondition OPTIONAL,
&deleteAccessCondition [5] AccessCondition OPTIONAL,
&editAccessCondition [6] AccessCondition OPTIONAL,
--
-- The following fields are used to record lists of objects placed
-- under the control of this ACCESS-CONTROL-LIST object.
-- They will be referred to collectively as the Controlled Object Lists
--
&AccessControlLists Identifier OPTIONAL,
&Domains Identifier OPTIONAL,
&ProgramInvocations Identifier OPTIONAL,
&UnitControls Identifier OPTIONAL,

IF (vadr)
&UnnamedVariables Address OPTIONAL,

ENDIF
IF (vnam)

&NamedVariables ObjectName OPTIONAL,
IF (vlis)

&NamedVariableLists ObjectName OPTIONAL,
ENDIF

&NamedTypes ObjectName OPTIONAL,
ENDIF

&DataExchanges ObjectName OPTIONAL,
&Semaphores Identifier OPTIONAL,
&OperatorStations Identifier OPTIONAL,
&EventConditions ObjectName OPTIONAL,
&EventActions ObjectName OPTIONAL,
&EventEnrollments ObjectName OPTIONAL,
&Journals ObjectName OPTIONAL

IF (cspi)
, &EventConditionLists ObjectName OPTIONAL
ENDIF

}

9.1.1.1 &name

The &name field uniquely identifies the Access Control List object within the VMD. The name shall be a VMD-
specific Identifier formed according to the rules for MMS Object Names.

9.1.1.2 &accessControl

Each Access Control List object is itself subject to access control. This field identifies the Access Control List
object that governs access to this object.

9.1.1.3 &readAccessCondition

This field identifies the Access Condition instance that describes the access conditions to be met for read access to
the object. Access Condition is described in 9.1.2. The services affected are:

a) Read
b) Output

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 61

9.1.1.4 &storeAccessCondition

This field identifies the Access Condition instance that describes the access conditions to be met for store access to
the object. Access Condition is described in 9.1.2. The services affected are:

a) InitiateUploadSequence
b) StoreDomainContent
c) ReadJournal

d) UnitControlUpload
e) StoreUnitControlToFile

9.1.1.5 &writeAccessCondition

This field identifies the Access Condition instance that describes the access conditions to be met for write access
to the object. Access Condition is described in 9.1.2. The services affected are:

a) Write
b) Input

c) ExchangeData

9.1.1.6 &loadAccessCondition

This field identifies the Access Condition instance that describes the access conditions to be met for load access to
the object. Access Condition is described in 9.1.2. The services affected are:

a) InitiateDownloadSequence*
b) LoadDomainContent*
c) CreateProgramInvocation*
d) DefineNamedVariable*
e) DefineNamedVariableList*
f) DefineNamedType*
g) DefineSemaphore
h) TakeControl
i) AttachToSemaphore
j) DefineEventCondition*
k) DefineEventAction*
l) DefineEventEnrollment*
m) TriggerEvent

n) AlterEventConditionMonitoring
o) AlterEventEnrollment
p) AcknowledgeEventNotification
q) CreateJournal*
r) InitializeJournal
s) WriteJournal
t) DefineAccessControlList*
u) AlterProgramInvocationAttributes
v) InitiateUnitControlLoad
w) CreateUnitControl*
x) DefineEventConditionList*
y) AlterEventConditionListMonitoring

NOTE * Since these services create these objects, the services can only be affected by the Access Control List referenced by
the VMD.

9.1.1.7 &executeAccessCondition

This field identifies the Access Condition instance that describes the access conditions to be met for execute access
to the object. Access Condition is described in 9.1.2. The services affected are:

a) Start
b) Stop
c) Resume
d) Reset
e) Kill

f) VMDStop
g) VMDReset
h) Select
i) StartUnitControl
j) StopUnitControl

9.1.1.8 &deleteAccessCondition

This field identifies the Access Condition instance that describes the access conditions to be met to delete the
object. Access Condition is described in 9.1.2. The services affected are:

a) DeleteDomain
b) DeleteProgramInvocation
c) DeleteVariableAccess
d) DeleteNamedVariableList
e) DeleteNamedType
f) DeleteSemaphore
g) DeleteEventCondition

h) DeleteEventAction
i) DeleteEventEnrollment
j) DeleteJournal
k) DeleteAccessControlList
l) DeleteUnitControl
m) DeleteEventConditionList

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved62

9.1.1.9 &editAccessCondition

This field identifies the Access Condition instance that describes the access conditions to be met for edit access to
the object, that is, to change the access control. Access Condition is described in 9.1.2. The services affected are:

a) ChangeAccessControl
b) Rename
c) AddToUnitControl

d) RemoveFromUnitControl
e) AddEventConditionListReference
f) RemoveEventConditionLIstReference

9.1.1.10 &AccessControlLists

This field identifies the set of Access Control List objects that have their access controlled by this object. Objects
of this class are only affected by:

a) &deleteAccessCondition
b) &editAccessCondition

9.1.1.11 &Domains

This field identifies the set of Domain objects that have their access controlled by this object. Objects of this class
are only affected by:

a) &loadAccessCondition
b) &storeAccessCondition

c) &deleteAccessCondition
d) &editAccessCondition

9.1.1.12 &ProgramInvocations

This field identifies the set of Program Invocation objects that have their access controlled by this object. Objects
of this class are only affected by:

a) &loadAccessCondition
b) &executeAccessCondition

c) &deleteAccessCondition
d) &editAccessCondition

9.1.1.13 &UnitControls

This field identifies the set of Unit Control objects that have their access controlled by this object. This field is
present only if the cspi parameter CBB has been negotiated. Objects of this class are only affected by:

a) &loadAccessCondition
b) &executeAccessCondition

c) &deleteAccessCondition
d) &editAccessCondition

9.1.1.14 &UnnamedVariables

This field identifies the set of Unnamed Variable objects that have their access controlled by this object. This field
is present only if the vadr parameter CBB has been negotiated. Objects of this class are only affected by:

a) &readAccessCondition
b) &writeAccessCondition

9.1.1.15 &NamedVariables

This field identifies the set of Named Variable objects that have their access controlled by this object. This field is
present only if the vnam parameter CBB has been negotiated. Objects of this class are only affected by:

a) &readAccessCondition
b) &writeAccessCondition

c) &deleteAccessCondition
d) &editAccessCondition

9.1.1.16 &NamedVariableLists

This field identifies the set of Named Variable List objects that have their access controlled by this object. This
field is present only if the vnam and the vlis parameter CBB's have been negotiated. Objects of this class are
only affected by:

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 63

a) &readAccessCondition
b) &writeAccessCondition

c) &deleteAccessCondition
d) &editAccessCondition

9.1.1.17 &NamedTypes

This field identifies the set of Named Type objects that have their access controlled by this object. This field is
present only if the vnam parameter CBB has been negotiated. Objects of this class are only affected by:

a) &deleteAccessCondition
b) &editAccessCondition

9.1.1.18 &DataExchanges

This field identifies the set of Data Exchange objects that have their access controlled by this object. Objects of
this class are only affected by:

a) &writeAccessCondition
b) &editAccessCondition

9.1.1.19 &Semaphores

This field identifies the set of Semaphore objects that have their access controlled by this object. Objects of this
class are only affected by:

a) &loadAccessCondition
b) &deleteAccessCondition

c) &editAccessCondition

9.1.1.20 &OperatorStations

This field identifies the set of Operator Station objects that have their access controlled by this object. Objects of
this class are only affected by:

a) &readAccessCondition
b) &writeAccessCondition

c) &editAccessCondition

9.1.1.21 &EventConditions

This field identifies the set of Event Condition objects that have their access controlled by this object. Objects of
this class are only affected by:

a) &loadAccessCondition
b) &deleteAccessCondition

c) &editAccessCondition

9.1.1.22 &EventActions

This field identifies the set of Event Action objects that have their access controlled by this object. Objects of this
class are only affected by:

a) &loadAccessCondition
b) &deleteAccessCondition

c) &editAccessCondition

9.1.1.23 &EventEnrollments

This field identifies the set of Event Enrollment objects that have their access controlled by this object. Objects of
this class are only affected by:

a) &loadAccessCondition
b) &deleteAccessCondition

c) &editAccessCondition

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved64

9.1.1.24 &Journals

This field identifies the set of Journal objects that have their access controlled by this object. Objects of this class
are only affected by:

a) &loadAccessCondition
b) &storeAccessCondition

c) &deleteAccessCondition
d) &editAccessCondition

9.1.1.25 &EventConditionLists

This field identifies the set of Event Condition List objects that have their access controlled by this object. This
field is present only if the cspi parameter CBB has been negotiated. Objects of this class are only affected by:

a) &loadAccessCondition
b) &storeAccessCondition

c) &deleteAccessCondition
d) &editAccessCondition

9.1.2 Access Condition

This type specifies a condition that, if not satisfied, will require the MMS service to fail. This type is a choice of
one of the following types:

a) never This condition indicates that the service controlled by this Access Control List shall always
fail.

b) semaphore This condition indicates that if the named semaphore is not owned by the MMS service
requester, the service controlled by this Access Control List shall fail.

c) user This condition indicates that the service controlled by this Access Control List shall fail
unless the Application Reference of the client matches the value of this field.

d) password This condition indicates that the service controlled by this Access Control List shall fail
unless the client has provided the authentication values that match the value of this field.

e) joint The service controlled by this Access Condition List shall succeed if all of the conditions in
the List of Access Conditions succeed; otherwise the service shall fail.

f) alternate The service controlled by this Access Condition List shall succeed if any of the conditions
in the List of Access Conditions succeed; otherwise the service shall fail.

 AccessCondition ::= CHOICE {
never [0] IMPLICIT NULL,
semaphore [1] Identifier,
user [2] CHOICE {

association ApplicationReference,
none NULL },

password [3] Authentication-value,
joint [4] IMPLICIT SEQUENCE OF AccessCondition,
alternate [5] IMPLICIT SEQUENCE OF AccessCondition }

9.1.3 MMS Access services

For each of the affected services, the service procedure shall begin with the following steps:

a) If the Access Control List specified by the &accessControl field of the VMD contains an Access Control
Element whose Service Class attribute matches the service class of the requested service, the Access
Condition of that Access Control Element shall be evaluated. If the Access Condition does not succeed,
the service shall fail, returning an error of class ACCESS and an error code of OBJECT-ACCESS-
DENIED.

b) If the Access Control List specified by the &accessControl field of the object of the service (if any)
contains an Access Control Element whose Service Class attribute matches the service class of the
requested service, the Access Condition of that Access Control Element shall be evaluated. If the Access
Condition does not succeed, the service shall fail, returning an error of class ACCESS and an error code of
OBJECT-ACCESS-DENIED.

c) The remainder of the service procedure shall be performed.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 65

9.1.3.1 Access Condition evaluation

The evaluation of the Access Condition shall be performed as follows:

a) If the Access Condition = NEVER, the Access Condition fails.

b) If the Access Condition = SEMAPHORE, the semaphore specified by the Semaphore Name attribute of the
Access Condition shall be examined. If the Application Reference of any owner of the semaphore matches
the &client field of the Application Association whose &Transactions field contains the present
Transaction object, the Access Condition shall succeed; otherwise it shall fail. If the present Transaction
object is contained in the &EATransactions field of the VMD, the Access Condition shall fail.

c) If the Access Condition = USER, the &client field of the Application Association whose &Transactions
field contains the present Transaction object shall be compared to the Application Reference attribute of
the Access Condition. If they match, the Access Condition shall succeed; otherwise it shall fail. If the
present Transaction object is contained in the &EATransactions field of the VMD, the Access Condition
shall succeed if the Application Reference attribute of the Access Condition specifies the value NONE for
USER; otherwise it shall fail.

d) If the Access Condition = PASSWORD, if the &authenticationValue field of the Application Association
object is present, and if &authenticationValue field matches the Password attribute of the Access
Condition, the Access Condition shall succeed; otherwise it shall fail. Annex A describes the
Authentication-value and the conditions for match. If the present Transaction object is contained in the
&EATransactions field of the VMD, the Access Condition shall fail.

e) If the Access Condition = JOINT, the Access Conditions specified in the List of Access Condition attribute
shall be evaluated. If all of the Access Conditions in the list succeed, this Access Condition shall succeed;
otherwise this Access Condition shall fail. The order of evaluation of the Access Conditions of the List of
Access Condition attribute shall be a local matter.

f) If the Access Condition = ALTERNATE, the Access Conditions specified in the List of Access Condition
attribute shall be evaluated. If any of the Access Conditions succeed, this Access Condition shall succeed;
otherwise this Access Condition shall fail. The order of evaluation of the Access Conditions of the List of
Access Condition attribute shall be a local matter.

9.1.4 Reporting services

For those services that return a value of the MMS Deletable parameter, the service shall return a value false if the
Access Control List object referenced by the &accessControl field of the object contains any Access Control
Element specifying Service Class = DELETE and Access Condition = NEVER. Otherwise, these services shall
return a value of true. The value shall not depend on the Access Control List object referenced by the
&accessControl field of the VMD. These services include:

a) GetDomainAttributes
b) GetProgramInvocationAttributes
c) GetVariableAccessAttributes
d) GetScatteredAccessAttributes
e) GetNamedVariableListAttributes
f) GetNamedTypeAttributes
g) ReportSemaphoreStatus

h) GetEventConditionAttributes
i) GetEventActionAttributes
j) GetEventEnrollmentAttributes
k) ReportJournalStatus
l) GetDataExchangeAttributes
m) GetAccessControlAttributes

9.2 AccessCondition parameter

The Access Condition parameter is a parameter common to several Access Control services. It expresses a
condition required to be satisfied if the service is to be allowed to proceed.

9.2.1 Structure

The structure of the component parameters is shown in Table 15.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved66

Parameter Name Req/Rsp Ind/Cnf

 Access Condition
 Never
 Semaphore
 User
 Password
 Joint
 List Of Access Condition
 Alternate
 List Of Access Condition

M
S
S
S
S
S
M
S
M

M(=)
S(=)
S(=)
S(=)
S(=)
S(=)
M(=)
S(=)
M(=)

Table 15 - Access Condition parameter

9.2.1.1 Access Condition

This parameter shall convey the condition to be satisfied. One of the following parameters shall be selected.

9.2.1.1.1 Never

Selection of this parameter shall indicate that the service class identified in this Access Control Element shall
always fail, i.e., it shall never succeed.

9.2.1.1.2 Semaphore

Selection of this parameter shall indicate that the service class identified in this Access Control Element shall fail
if the MMS client requesting this service does not own the named semaphore. The value of this parameter is the
name of the semaphore so identified.

9.2.1.1.3 User

Selection of this parameter shall indicate that the service class identified in the Access Control Element shall fail
unless the MMS client requesting this service has the Application Reference identified in this parameter. This
parameter may also specify NONE in which case the service shall fail unless the transaction was initiated as an
Event Action, i.e., as the result of the occurrence of an event.

9.2.1.1.4 Password

Selection of this parameter shall indicate that the service class identified in this Access Control Element shall fail
unless the MMS Client requesting this service has provided the Authentication Value identified in this parameter
in the M-ASSOCIATE service.

9.2.1.1.5 Joint

Selection of this parameter shall indicate that this condition shall succeed if all of the Access Conditions in the List
of Access Conditions that follow succeed. If this parameter is selected, the following parameter shall appear.

9.2.1.1.5.1 List of Access Condition

This parameter shall contain one or more Access Conditions as described in 9.2.

9.2.1.1.6 Alternate

Selection of this parameter shall indicate that this condition shall succeed if any of the Access Conditions in the
List of Access Conditions that follow succeed. If this parameter is selected, the following parameter shall appear.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 67

9.2.1.1.6.1 List of Access Condition

This parameter shall contain one or more Access Conditions as described in 9.2.

9.3 DefineAccessControlList service

The DefineAccessControlList service is used by the MMS client to define a set of conditions that will govern
access to MMS objects.

9.3.1 Structure

The structure of the component service primitives is shown in Table 16.

Parameter Name Req Ind Rsp Cnf CBB

Argument
 Access Control List Name
 List of Access Control Element
 Service Class
 Access Condition

Result(+)

Result(-)
 Error Type

M
M
M
M
M

M(=)
M(=)
M(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 16 - DefineAccessControlList service

9.3.1.1 Argument

This parameter shall convey the parameters of the DefineAccessControlList service request.

9.3.1.1.1 Access Control List Name

This parameter, of type Identifier, shall specify the name of a Access Control List object. Access Control List
objects always have VMD-specific scope.

9.3.1.1.2 List of Access Control Element

This parameter shall contain zero or more values describing an access control element. Each such element shall
consist of a Service Class parameter indicating which set of MMS services the element constrains, and an Access
Condition parameter indicating the condition that, if not satisfied, shall require the services identified by the first
parameter to fail.

9.3.1.1.2.1 Service Class

This parameter shall indicate which service class shall be represented in this Access Control Element. The
possible values are READ, WRITE, LOAD, STORE, EXECUTE, DELETE and EDIT.

9.3.1.1.2.2 Access Condition

This parameter shall identify the condition that shall be satisfied to allow the service to proceed.

9.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved68

9.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

9.3.2 Service Procedure

9.3.2.1 Preconditions

The MMS server shall verify that:

a) all the conditions in the Access Control List object referenced by the &accessControl field of the VMD are
satisfied for the service class = LOAD;

b) no Access Control List object exists with the same name.

If these conditions are not satisfied, the service shall fail and a Result(-) shall be returned.

9.3.2.2 Actions

The MMS server shall create an Access Control List object and assign it attributes as indicated by the parameter
list. The &accessControl field shall be initialized to an Access Control List object that will report the value of
MMS Deletable as true (see 9.1.4). The predefined symbol 'M_Deletable' (see 25.3.2.1) may be used for this
purpose. Each of the Controlled Object fields of the Access Control List object shall be initialized to an empty
list. A Result(+) shall be returned.

9.4 GetAccessControlListAttributes service

The GetAccessControlListAttributes service is used by an MMS client to return the fields of the Access Control
List object, either the object directly identified, or the object that is referenced by the &accessControl field of the
identified object.

9.4.1 Structure

The structure of the component service primitives is shown in Table 17.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 69

Parameter Name Req Ind Rsp Cnf CBB

Argument
 Access Control List Name
 VMD
 Specific Object
 Object Class
 Object Name

Result(+)
 Access Control List Name
 List Of Access Control Element
 Service Class
 Access Condition
 VMD Use
 Counts of Controlled Objects
 Object Class
 Object Count
 Access Control List

Result(-)
 Error Type

M
S
S
S
M
M

M(=)
S(=)
S(=)
S(=)
M(=)
M(=)

S
M
M
M
M
M
C
C
C
C

S
M

S(=)
M(=)
M(=)
M(=)
M(=)
M(=)
C(=)
C(=)
C(=)
C(=)

S(=)
M(=)

aco

Table 17 - GetAccessControlListAttributes service

9.4.1.1 Argument

This parameter shall convey the parameters of the GetAccessControlListAttributes service request. One of the
following parameters shall be chosen.

9.4.1.1.1 Access Control List Name

This parameter, of type Identifier, shall specify the name of a Access Control List whose fields are to be returned.
Access Control List objects always have VMD-specific scope.

9.4.1.1.2 VMD

This parameter shall specify that the Access Control List object referenced by the &accessControl field of the
VMD is the Access Control List object whose fields are to be returned.

9.4.1.1.3 Specific Object

This parameter shall specify that the Access Control List object referenced by the parameters that follow is the
Access Control List object whose fields are to be returned. If this parameter is chosen, the following parameters
shall appear.

9.4.1.1.3.1 Object Class

This parameter identifies the object class of the object whose &accessControl field references the Access Control
List object to be returned.

9.4.1.1.3.2 Object Name

This parameter identifies the specific object whose &accessControl field references the Access Control List object
to be returned.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved70

9.4.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

9.4.1.2.1 Access Control List Name

This parameter, of type Identifier, shall specify the name of the Access Control List whose fields are being
returned. If the Access Control List Name choice was selected for the Argument, this parameter shall have the
same value. Access Control List objects always have VMD-specific scope.

9.4.1.2.2 List of Access Control Element

This parameter shall contain zero or more values describing Access Control Elements. Each such element shall
consist of a Service Class parameter indicating which set of MMS services the element constrains, and an Access
Condition parameter indicating the condition that, if not satisfied, shall require the services identified by the first
parameter to fail.

9.4.1.2.2.1 Service Class

This parameter shall indicate which service class is represented in this Access Control Element. The possible
values are READ, WRITE, LOAD, STORE, EXECUTE, DELETE and EDIT.

9.4.1.2.2.2 Access Condition

This parameter shall identify the condition to be satisfied to allow the service to proceed.

9.4.1.2.3 VMD Use

This parameter, of type boolean, shall indicate whether (true) or not (false) this Access Control List object is
referenced by the &accessControl field of the VMD.

9.4.1.2.4 Counts of Controlled objects

This parameter shall identify the number of objects of each object class that reference this Access Control List
object. For each object class the following parameters shall appear. If there are no representatives of a given class
in this list, i.e., if the count is zero, these parameters shall not appear.

9.4.1.2.4.1 Object Class

This parameter identifies the object class of the set of objects whose count follows.

9.4.1.2.4.2 Object Count

This parameter, of type integer, is number of objects of the specified object class that appear in the corresponding
field of this Access Control List object.

9.4.1.2.5 Access Control List

This parameter, of type Identifier, shall indicate the name of the Access Control List object that controls access to
this Access Control List object. This parameter shall not appear unless the aco parameter CBB has been
negotiated.

9.4.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

9.4.2 Service Procedure

If the Access Control List object does not exist, a Result(-) shall be returned.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 71

The MMS server shall return the fields of the Access Control List object identified in the service request. A
Result(+) shall be returned with the Access Control List fields.

9.5 ReportAccessControlledObjects service

The Report Access Controlled Objects service returns a (partial) list of objects that reference a specific Access
Control List object.

9.5.1 Structure

The structure of the component service primitives is shown in Table 18.

Parameter Name Req Ind Rsp Cnf CBB

Argument
 Access Control List Name
 Object Class
 Continue After

Result(+)
 List Of Object Name
 More Follows

Result(-)
 Error Type

M
M
M
U

M(=)
M(=)
M(=)
U(=)

S
M
M

S
M

S(=)
M(=)
M(=)

S(=)
M(=)

Table 18 - ReportAccessControlledObjects service

9.5.1.1 Argument

This parameter shall convey the parameters of the ReportAccessControlledObjects service request.

9.5.1.1.1 Access Control List Name

This parameter, of type Identifier, shall specify the name of a Access Control List. Access Control List objects
always have VMD-specific scope.

9.5.1.1.2 Object Class

This parameter identifies the object class of the set of objects desired.

9.5.1.1.3 Continue After

This parameter shall be present when the MMS client wishes the list of object names returned by the MMS server
to begin with a name other than the (logical) first name in the list. If the value of the Continue After parameter
does not match an existing name at the VMD of the class specified, the collating sequence specified in 5.4.2 shall
be used by the MMS server to determine the name to start after.

9.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

9.5.1.2.1 List of Object Name

This parameter shall contain the names of objects whose &accessControl field identifies the Access Control List
object specified by the Access Control List parameter. The list shall contain zero or more entries. The list of
names shall be ordered according to 5.4.2.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved72

9.5.1.2.2 More Follows

This parameter, of type boolean, shall indicate whether additional ReportAccessControlledObjects requests are
necessary to retrieve all of the requested information. If true, more requests are necessary (if the MMS client
wishes to retrieve more data). If false, either the List of Object Name contains the last name in the list, or the List
of Object Name is empty. This parameter shall be false when the List of Object Name contains zero names.

9.5.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

9.5.2 Service Procedure

If the Access Control List object does not exist, a Result(-) shall be returned.

The MMS server shall return the list of names of objects whose access control is governed by the Access Control
List object identified in the request.

9.6 DeleteAccessControlList service

The DeleteAccessControlList service is used by the MMS client to delete an Access Control List object.

9.6.1 Structure

The structure of the component service primitives is shown in Table 19.

Parameter Name Req Ind Rsp Cnf CBB

Argument
 Access Control List Name

Result(+)

Result(-)
 Error Type

M
M

M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 19 - DeleteAccessControlList service

9.6.1.1 Argument

This parameter shall convey the parameters of the DeleteAccessControlList service request.

9.6.1.1.1 Access Control List Name

This parameter, of type Identifier, shall specify the name of an Access Control List. Access Control List objects
always have VMD-specific scope.

9.6.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 73

9.6.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

9.6.2 Service Procedure

9.6.2.1 Preconditions

The MMS server shall verify that:

a) the Access Control List object identified by the Access Control List Name parameter exists.

b) all the conditions in the Access Control List object referenced by the &accessControl field of the VMD are
satisfied for the service class = DELETE.

c) all the conditions in the Access Control List object referenced by the &accessControl field of the Access
Control List object to be deleted are satisfied for the service class = DELETE.

d) all the fields of the Access Control List object that refer to objects controlled by this Access Control List
object are empty.

If these conditions are not satisfied, a Result(-) shall be returned with an error class = ACCESS and error code =
OBJECT-ACCESS-DENIED.

9.6.2.2 Action

The MMS server shall delete the Access Control List object and return a Result(+).

9.7 ChangeAccessControl service

The ChangeAccessControl service is used by the MMS client to change the access control specification for a set of
objects of a single object class in the VMD or of the VMD itself. It does this by referencing an Access Control
List object that contains the conditions describing the access control required.

9.7.1 Structure

The structure of the component service primitives is shown in Table 20.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved74

Parameter Name Req Ind Rsp Cnf CBB

Argument
 Scope of Change
 VMD
 List of Objects
 Object Class
 Object Scope
 List of Object Name
 Domain Name
 Access Control List Name

Result(+)
 Number Matched
 Number Changed

Result(-)
 Error Type
 Number Changed

M
M
S
S
M
M
C
C
M

M(=)
M(=)
S(=)
S(=)
M(=)
M(=)
C(=)
C(=)
M(=)

S
M
M

S
M
M

S(=)
M(=)
M(=)

S(=)
M(=)
M(=)

Table 20 - ChangeAccessControl service

9.7.1.1 Argument

This parameter shall convey the parameters of the ChangeAccessControl service request. One of the following
parameters shall be chosen.

9.7.1.1.1 VMD

Selection of this parameter indicates that the &accessControl field of the VMD is to be changed.

9.7.1.1.2 List of Objects

Selection of this parameter indicates that some set of MMS objects shall have their &accessControl field changed.
If this parameter is selected, the following parameters shall appear.

9.7.1.1.3 Object Class

This parameter shall specify the class of the objects whose &accessControl field is to be altered.

9.7.1.1.4 Object Scope

This parameter shall specify the extent of applicability of the change of &accessControl field. Possible values for
this parameter, and their meaning, are as follows:

SPECIFIC - Specifies that the MMS objects of class Object Class specified by the List of Object Name parameter
are to have their &accessControl field changed.

AA-Specific - Specifies that all MMS named objects of class Object Class within the scope of the current
application association are to have their &accessControl field changed.

DOMAIN - Specifies that all MMS named objects of class Object Class within the scope of the specified Domain
are to have their &accessControl field changed.

VMD - Specifies that all MMS named objects of class Object Class having VMD scope are to have their access
control changed.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 75

9.7.1.1.4.1 List of Objects

This parameter shall be specified if Object Scope is SPECIFIC. Otherwise, it shall be omitted. If included, it shall
specify the names of the objects whose &accessControl field is to be altered. If the Object Class is Domain,
Program Invocation, Semaphore, Data Exchange, or Access Control List, it shall not specify the domain-
specific choice of Object Name. If the Object Class is Domain, Program Invocation, Semaphore, Data
Exchange, or Access Control List , it shall not specify the aa-specific choice of ObjectName.

9.7.1.1.4.2 Domain Name

This parameter, of type Identifier, shall be specified if Object Scope is equal to DOMAIN. Otherwise, it shall be
omitted. It provides the name of the Domain that includes all MMS named objects of class Object Class that are to
have their &accessControl field changed.

9.7.1.1.5 Access Control List Name

This parameter, of type Identifier, shall specify the name of an Access Control List object. Access Control List
objects always have VMD-specific scope.

9.7.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

9.7.1.2.1 Number Matched

This parameter, of type integer, shall indicate the number of MMS named objects that matched the name
specification in the service request. If the VMD choice was selected for the argument, this value shall be one.

9.7.1.2.2 Number Changed

This parameter, of type integer, shall indicate the number of MMS named objects that had their &accessControl
field changed as a result of executing the service procedure.

NOTE The difference between the Number Matched and Number Changed parameter indicate the number of objects that did
not have their &accessControl field changed, either because the access control conditions were not satisfied for this
object for Service Class = EDIT, or because there was an attempt to change the Service Class = DELETE condition
from NEVER to something else.

9.7.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, shall provide the reason for failure. When failure is indicated, the following parameter shall
be returned.

9.7.1.3.1 Number Changed

This parameter, of type integer, shall indicate the number of MMS named objects that had their &accessControl
field changed as a result of executing the service procedure.

9.7.2 Service Procedure

9.7.2.1 Preconditions

The MMS server shall verify:

a) that the Access Control List object identified by the Access Control List Name parameter exists;

b) that all the conditions in the Access Control List object referenced by the Reference to Access Control List
attribute of the VMD are satisfied for the service class = EDIT.

c) If the List of Objects parameter was chosen in the Argument, for each of the MMS named objects of class
Object Class specified in the Argument by the Object Scope, and (in the case of DOMAIN) by the Domain

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved76

Name parameter, or (in the case of SPECIFIC) by the Names in the List of Object Names parameter, that
the object identified exists.

d) If the VMD parameter was chosen for the Argument, that all the conditions in the Access Control List
specified by the (current) &accessControl field of the VMD are satisfied for the service class = EDIT (see
9.1.3);

If these conditions are not satisfied, a Result(-) shall be returned and the remainder of this procedure shall be
skipped.

9.7.2.2 Procedure for List of Objects

If the List of Objects parameter was chosen in the Argument, the following procedure shall be performed.

For each of the MMS named objects of class Object Class specified in the Argument by the Object Scope, and (in
the case of DOMAIN) by the Domain Name parameter, or (in the case of SPECIFIC) by the Names in the List of
Object Names parameter, the following steps shall be performed:

a) The MMS server shall verify that all the conditions in the Access Control List specified by the (current)
&accessControl field of this object are satisfied for the service class = EDIT (see 9.1.3); otherwise, this
object shall not have its &accessControl field changed, nor be included in the count of the number of
objects changed.

b) If the &accessControl field of the specified object specifies an Access Control List object containing an
Access Control Element that identifies the service class DELETE and the Access Condition NEVER,
verify that the Access Control List object identified by the Access Control List Name parameter also
contains the service class DELETE and the Access Condition NEVER. Otherwise, this object shall not
have its &accessControl field changed, nor be included in the count of the number of objects changed.

c) In the (current) Access Control List object referenced by the &accessControl field of the specified object,
delete the reference to this object in the proper Controlled Objects List field.

d) Change the &accessControl field of the specified object to reference the Access Control List object
identified by the Access Control List Name parameter.

e) In the (new) Access Control List object referenced by the &accessControl field of the specified object, add
a reference to this object in the proper Controlled Objects List field.

After all the objects indicated by the argument parameters have been processed, a Result(+) shall be issued with
the values assigned to Number Matched and Number Changed parameters.

If an error occurs in the changing of the access control of any object, a Result(-) shall be issued with the Number
Changed parameter indicating the number of objects that correctly had their access control changed. Failure to
change access control of an object that did not satisfy condition a) or b) shall not be deemed an error.

NOTE Since every object has access control of some kind, it impossible to "remove" access control from an object. The
effect of removing access control can be achieved by changing the Access Control List reference to indicate either
M_Deletable or M_NonDeletable as appropriate.

9.7.2.3 Procedure for VMD

Change the &accessControl field of the VMD to reference the Access Control List object identified by the Access
Control List Name parameter. Return a Result(+) with a value of Number Changed of one.

NOTE The VMD is not referenced within the Controlled Objects List fields of an Access Control List because its method of
identification is different from named MMS objects.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 77

10.1 Introduction

This clause provides no object models; it specifies the following services.

Status
UnsolicitedStatus
GetNameList
Identify

Rename
GetCapabilityList
VMDStop
VMDReset

10.2 Status Response parameter

The Status Response Parameter is used in several services in this clause. Its structure is shown in Table 21.

 Parameter Name Rep Cnf CBB

 Status Response
 Logical Status
 Physical Status
 Local Detail
 Operation State
 Extended Status
 Extended Status Mask
 Selected Program Invocation

M
M
M
U
C
C
U
C

M(=)
M(=)
M(=)
U(=)
C(=)
C(=)
U(=)
C(=)

csr
csr
csr
csr

Table 21 - Status Response parameter

10.2.1 Logical Status

This parameter, of type integer, shall convey the value of the &logicalStatus field of the VMD object. The VMD
object is defined in clause 7.

10.2.2 Physical Status

This parameter, of type integer, shall convey the value of the &physicalStatus field of the VMD object. The VMD
object is defined in clause 7.

10.2.3 Local Detail

This optional parameter, of type bitstring, shall convey the value of the &local-detail field of the VMD object.
The VMD object is defined in clause 7.

10.2.4 Operation State

This parameter, of type integer, shall convey the value of the &operationState field of the VMD. This field shall
be present only if the csr CBB has been negotiated.

10.2.5 Extended Status

This parameter, of type bitstring, shall convey the boolean values of the set of extended attributes:

&safety-Interlocks-Violated,
&any-Resource-Power-On,
&all-Resources-Calibrated,
&local-Control.

These attributes are defined in clause 7. This field shall be present only if the csr CBB has been negotiated.

10 VMD Support Services

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved78

10.2.6 Extended Status Mask

This optional parameter, of type bitstring, shall convey the significance of the corresponding bit in the Extended
Status parameter. If a bit in this bitstring is one, the corresponding bit in the Extended Status parameter shall be
significant. If a bit in this bitstring is zero, the corresponding bit in the Extended Status parameter shall be
ignored. The default value for this parameter is all one's. This field shall be present only if the csr CBB has been
negotiated, and its use is a user option.

10.2.7 Selected Program Invocation

This parameter shall convey the value of &selected-Program-Invocation field of the VMD. This is the Program
Invocation that has been selected to be the Controlling Program Invocation for the system. If no Program
Invocation has been selected, this parameter shall have the value NONE. This field shall be present only if the
csr CBB has been negotiated.

10.3 Status service

The Status service is used by an MMS client to determine the general condition or status of a VMD.

10.3.1 Structure

The structure of the component service primitives is shown in Table 22.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Extended Derivation

Result(+)
 Status Response

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M

S
M

S(=)
M(=)

S(=)
M(=)

Table 22 - Status service

10.3.1.1 Argument

This parameter shall convey the parameter of the Status service request.

10.3.1.1.1 Extended Derivation

This parameter, of type boolean, shall indicate which method is to be used to derive the Status response. This
parameter is applicable only if the MMS server supports two methods for deriving the Status Response, where one
method results in a more extensive derivation of the Status Response. If the value of this parameter is true, the
method that results in a extended derivation shall be used. If the value is false, the other method shall be used. If
the MMS server only supports one method, the value shall be ignored.

NOTE An example of an extended derivation method is the invocation of a set of self-diagnostic routines.

10.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall include the
following parameter.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 79

10.3.1.2.1 Status Response

This parameter shall convey the information about the status of the VMD.

10.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

10.3.2 Service Procedure

The MMS server shall perform the Status service by determining the information necessary to create a valid
response.

10.4 UnsolicitedStatus service

The UnsolicitedStatus service may be used by an MMS-user to spontaneously report its status.

10.4.1 Structure

The structure of the component service primitives is shown in Table 23.

 Parameter Name Req Ind CBB

Argument
 Status Response

M
M

M(=)
M(=)

Table 23 - UnsolicitedStatus service

The parameters in this service have meaning equivalent to the parameters in the Status response and confirm
service primitives.

10.4.2 Service Procedure

An MMS-user that is capable of detecting a change in its own status may, at its option, report this change without
receiving a Status request. This is accomplished by requesting the UnsolicitedStatus service. The information in
the UnsolicitedStatus.request shall reflect the values of the corresponding attributes of the VMD. A
UnsolicitedStatus.request shall not be sent if the peer MMS-user did not indicate support of the UnsolicitedStatus
service in the Services Supported parameter received in the Initiate Service.

NOTE The choice of application associations (if more than one exists) on which to send the UnsolicitedStatus Service
request is a local matter. All associations, one association, or some group may be selected. The use of this service is
functionally equivalent to an Event Notification with an Event Action of the Status Service. The practical difference
is that by using the Event Notification method, the conditions under which the service is used are directly visible (and
modifiable) using MMS services, while in use of the UnsolicitedStatus, the conditions are a local matter and cannot
be determined or changed by the MMS user that is to receive the UnsolicitedStatus information.

10.5 GetNameList service

The GetNameList service may be used by an MMS client to request that a MMS server return the list of or part of
the list of object names defined at the VMD.

10.5.1 Structure

The structure of the component service primitives is shown in Table 24.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved80

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Object Class
 Object Scope
 Domain Name
 Continue After

Result(+)
 List of Identifier
 More Follows

Result(-)
 Error Type

M
M
M
C
U

M(=)
M(=)
M(=)
C(=)
U(=)

S
M
M

S
M

S(=)
M(=)
M(=)

S(=)
M(=)

Table 24 - GetNameList service

10.5.1.1 Argument

This parameter shall convey the parameters of the GetNameList service request.

10.5.1.1.1 Object Class

This parameter shall specify the object class of the object name to be returned by the responding MMS-user.

10.5.1.1.2 Object Scope

This parameter shall indicate the scope of the object name list to be returned. The possible values are
VMD-specific, Domain-specific, and AA-specific.

10.5.1.1.3 Domain Name

This parameter, of type Identifier, shall specify the name of a Domain if the Domain-specific choice of the Object
Scope parameter is chosen. Otherwise, this parameter shall not be present.

10.5.1.1.4 Continue After

This parameter, of type Identifier, shall be present when the MMS client wishes the list of object names returned
by the MMS server to begin with a name other than the (logical) first name in the list. It shall be a character string
containing the name of an object of class and scope specified in the Extended Object Class, Object Class and
Object Scope parameters. If the value of the Continue After parameter does not match an existing name at the
VMD of the class and scope specified, the collating sequence specified in 5.4.2 shall be used by the MMS server
to determine the name to start after as specified in the service procedure.

10.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

10.5.1.2.1 List Of Identifier

This parameter, of type Identifier, shall contain the names of objects existing at the VMD of the class and scope
specified in the Object Class and Object Scope parameters, subject to reduction by the action of the Continue After
parameter. The returned list shall contain zero or more entries and shall be sorted according to the collating
sequence specified in 5.4.2.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 81

10.5.1.2.2 More Follows

This parameter, of type boolean, shall indicate whether additional GetNameList requests are necessary to retrieve
all of the requested information. If true, more requests are necessary (if the MMS client wishes to retrieve more
data). If false, then either the List Of Identifier contains the last name in the list, or the List Of Identifier is empty.
This parameter shall be false if the List Of Identifier parameter contains zero names.

10.5.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

10.5.2 Service Procedure

The MMS server shall determine which objects have a name attribute value that satisfies the class and scope
specified in the Extended Object Class and Object Scope parameters of the indication service primitive. The
MMS server shall return this list of object names in the List of Identifier parameter of the response service
primitive. The elements of the List of Identifier shall be ordered as determined by the collating sequence specified
in 5.4.2.

If the Continue After parameter is not present in the indication service primitive, the List of Identifier shall begin
with the first name, as determined by the collating sequence specified in 5.4.2. Otherwise, the List Of Identifier
shall begin with the first name after the name specified in the Continue After parameter, using the ordering
described above. The More Follows parameter shall be returned with the value determined as described above.

The MMS server shall not issue a Result(-) parameter to indicate that no objects of the requested class and scope
exist. Instead, a Result(+) parameter shall be issued with an empty List Of Identifier.

NOTE Repeated usage of this service with the Continue After parameter does not guarantee a list that is consistent in time
with any other instance of use of this service. This service returns a segment of the list of object names for which the
starting point is based on the Continue After parameter.

10.6 Identify service

The Identify service may be used by an MMS client to obtain identifying information from an MMS server.

10.6.1 Structure

The structure of the component service primitives is shown in Table 25.

 Parameter Name Req Ind Rep Cnf CBB

Argument

Result(+)
 Vendor Name
 Model Name
 Revision
 List of Abstract Syntaxes

Result(-)
 Error Type

M M(=)

S
M
M
M
C

S
M

S(=)
M(=)
M(=)
M(=)
C(=)

S(=)
M(=)

Table 25 - Identify service

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved82

10.6.1.1 Argument

There are no service specific parameters of the Identify service request.

10.6.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

10.6.1.2.1 Vendor Name

This parameter, of type character string, shall convey the value of the &vendorName field of the VMD object.
The VMD object is defined in clause 7.

10.6.1.2.2 Model Name

This parameter, of type character string, shall convey the value of the &modelName field of the VMD object. The
VMD object is defined in clause 7.

10.6.1.2.3 Revision

This parameter, of type character string, shall convey the value of the &revision field of the VMD object. The
VMD object is defined in clause 7.

10.6.1.2.4 List Of Abstract Syntaxes

When included, this parameter, of type object identifier, shall convey the value of the &AbstractSyntaxes field of
the VMD object. The VMD object is defined in clause 7. This parameter shall not be included if the list is empty.

10.6.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

10.6.2 Service Procedure

A response service primitive with the Result(+) parameter shall be issued providing the specified information.

10.7 Rename service

The Rename service may be used by an MMS client in order to request that a MMS server change the identifier of
an object to a new identifier.

10.7.1 Structure

The structure of the component service primitives is shown in Table 26.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 83

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Object Class
 Current Name
 New Identifier

Result(+)

Result(-)
 Error Type

M
M
M
M

M(=)
M(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 26 - Rename service

10.7.1.1 Argument

This parameter shall convey the service specific parameters of the Rename service request.

10.7.1.1.1 Object Class

This parameter shall specify the object class of the object name to be renamed by the responding MMS-user.

10.7.1.1.2 Current Name

This parameter, of type object name, shall specify the object name of the object that is to be renamed.

10.7.1.1.3 New Identifier

This parameter, of type Identifier, shall specify the new identifier part for the referenced object name.

10.7.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

10.7.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

10.7.2 Service Procedure

10.7.2.1 Preconditions

The MMS server shall verify that:

a) an object exists with the type specified in Extended Object Class parameter and the object name specified
in the Current Name parameter.

b) any conditions specified for Service Class = EDIT are satisfied in the Access Control List object
referenced by the VMD.

c) any conditions specified for Service Class = EDIT are satisfied in the Access Control List object
referenced by this object.

d) an object does not exist with the same class type and scope of the Current Name parameter and identifier of
the New Identifier parameter.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved84

If any of these conditions are not satisfied, it shall return a Result(-) and skip the remainder of this procedure.

10.7.2.2 Actions

The MMS server shall change the identifier of the specified object to that supplied in the New Identifier parameter
and return a Result(+).

NOTE The Rename service is provided to augment commissioning facilities to change the name of objects that are supplied
as part of a VMD. Indiscriminate use of the service could cause existing applications to fail if the identifiers of
referenced objects are renamed.

10.8 GetCapabilityList service

The GetCapabilityList service is used by an MMS client to request that a MMS server return the list of or part of
the list of capabilities defined at the VMD.

10.8.1 Structure

The structure of the component service primitives is shown in Table 27.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Continue After

Result(+)
 List of Capabilities
 More Follows

Result(-)
 Error Type

M
U

M(=)
U(=)

S
M
M

S
M

S(=)
M(=)
M(=)

S(=)
M(=)

Table 27 - GetCapabilityList service

10.8.1.1 Argument

This parameter shall convey the parameters of the GetCapabilityList service request.

10.8.1.1.1 Continue After

This parameter, of type character string, shall be present if the MMS client wishes the List Of Capabilities returned
by the MMS server to begin with a capability other than the first capability in the list. If the Continue After
parameter does not match an existing capability of the VMD, the collating sequence specified in 5.4.2 shall be
used by the MMS server to determine the capability to start after.

10.8.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

10.8.1.2.1 List Of Capabilities

This parameter, of type character string, shall convey the value of the &Capabilities field of the VMD object. The
VMD object is defined in clause 7. The returned list shall contain zero or more entries and shall be sorted
according to the collating sequence specified in 5.4.2.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 85

10.8.1.2.2 More Follows

This parameter, of type boolean, shall indicate whether additional GetCapabilityList requests are necessary to
retrieve more of the requested information. If true, more requests are necessary (if the MMS client wishes to
retrieve more data). If false, either the List Of Capabilities contains the last capability in the list, or the List Of
Capabilities is empty. The More Follows parameter shall be false if the List Of Capability parameter contains zero
capabilities.

10.8.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

10.8.2 Service Procedure

The MMS server shall return the &Capabilities field of the VMD. If the Continue After parameter is not present
in the indication service primitive, the List Of Capabilities parameter shall begin with the first capability, as
determined by the collating sequence specified in 5.4.2 from the &Capabilities field of the VMD. Otherwise, the
List Of Capabilities parameter shall begin with the first capability after the capability specified in the Continue
After parameter , using the ordering described above. The More Follows parameter shall be returned with the
value determined as described above.

10.9 VMDStop service

The VMDStop service is used by an MMS client to stop all control activity at the MMS server and to put the
VMD into a state where manual intervention is required.

10.9.1 Structure

The structure of the component service primitives is shown in Table 28.

 Conformance: csr
 Parameter Name Req Ind Rsp Cnf CBB

 Argument

 Result(+)

 Result(-)
 Error Type

M M(=)

S

S
M

 S(=)

 S(=)
 M(=)

Table 28 - VMDStop service

10.9.1.1 Argument

There are no parameters in the argument of this service.

10.9.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

10.9.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved86

10.9.2 Service procedure

The MMS server shall stop all motion and associated control activity as soon as possible and set the value of the
&operationState field to manualInterventionRequired. All Program Invocations in the running state
shall be removed from the running state. The state of these Program Invocations is a local matter. The
&logicalStatus field shall be set to no-state-changes-allowed. These actions and their effect on the
attributes of the VMD are summarized in Table 29.

VMD field State after Service Performed

&operationState
&localControl
&logicalState
&physicalState

manual-intervention-required
undefined
no-state-changes-allowed
needs-commissioning

Table 29 - VMD attributes after VMDStop

10.10 VMDReset service

The VMDReset service is used by an MMS client to put the MMS server into an initialized state. This service also
provides the ability for the MMS client to request that the MMS server perform self-diagnostics in the
initialization of the VMD. All information relating to &physicalStatus will have been validated as a result of this
service.

NOTE In performing an initialization routine or in performing self-diagnostics the MMS server may not be able to maintain
the application association. However, the association should be maintained, if possible. It is not the intent of this
part of ISO 9506 that the connection to be broken as a result of this service.

10.10.1 Structure

The structure of the component service primitives is shown in Table 30.

 Conformance: csr
 Parameter Name Req Ind Rsp Cnf CBB

 Argument
 Extended Derivation

 Result(+)
 Status Response

 Result(-)
 Error Type

M
M

M(=)
M(=)

S
M

S
M

S(=)
M(=)

S(=)
M(=)

Table 30 - VMDReset service

10.10.1.1 Argument

This parameter contains the parameter of the VMDReset service request.

10.10.1.1.1 Extended Derivation

This parameter, of type boolean, indicates whether (true) or not (false) to perform self-diagnostics as part of the
VMDReset service.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 87

10.10.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

10.10.1.2.1 Status Response

This parameter shall convey the information about the status of the VMD.

10.10.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

10.10.2 Service procedure

Upon receipt of a VMDReset service indication, the MMS server shall perform the following steps:

a) If local conditions prevent completion of this service, return a Result(-).

b) Delete all Program Invocations and Domains whose &accessControl field allow deletion.

c) Perform a Status Service procedure using the Extended Derivation parameter.

If any step of this procedure fails, the service shall fail and a Result(-) response shall be returned. Otherwise a
Result(+) shall be returned containing the Status Response.

11 Domain Management Services

The MMS model of the Virtual Manufacturing Device (VMD) described in clause 7 introduces several abstract
elements. This clause describes the services that manage Domains. Domains may be dynamic in nature, coming
into existence and being removed from the system either by MMS services or by local action. Services are
provided to allow an MMS client to manipulate Domains defined at the MMS server.

11.1 Introduction and Models

This clause provides object models for the following objects:

DOMAIN
ULSM (Upload State Machine)

This clause specifies the following services:

InitiateDownloadSequence
DownloadSegment
TerminateDownloadSequence
InitiateUploadSequence
UploadSegment
TerminateUploadSequence

RequestDomainDownload
RequestDomainUpload
LoadDomainContent
StoreDomainContent
DeleteDomain
GetDomainAttributes

A Domain represents a subset of the capabilities of the VMD used for a specific purpose. The attributes of the
Domain are described below, followed by a brief description of the services that operate on the Domain object.

Domains come into existence in one of two ways: (1) a Domain is explicitly created by beginning a download
process; (2) a Domain may be created as part of the execution of a Program Invocation or by other local means.
Domains may also be predefined to the system, existing prior to the establishment of an MMS context.

11.1.1 The Domain Object Model

This clause introduces the model for the Domain.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved88

 DOMAIN ::= CLASS {
&name Identifier,

 -- shall be unique among the names of all Domains within the VMD
&Capabilities MMSString,
&state DomainState,
&aAssociation INTEGER OPTIONAL,

 -- This field shall be present if and only if
 -- the &state field has a value of
 -- loading, complete, incomplete, d1, d2, d3 or d9

&accessControl Identifier,
&sharable BOOLEAN,
&ProgramInvocations Identifier OPTIONAL,
&uploadsInProgress INTEGER,

 -- The following items reflect the Domain content
 -- All the items listed have Domain-specific names.
IF (vnam)

&NamedVariables NAMED-VARIABLE OPTIONAL,
IF (vlis)

&NamedVariableLists NAMED-VARIABLE-LIST OPTIONAL,
ENDIF

&NamedTypes NAMED-TYPE OPTIONAL,
ENDIF

&EventConditions EVENT-CONDITION OPTIONAL,
&EventActions EVENT-ACTION OPTIONAL,
&EventEnrollments EVENT-ENROLLMENT OPTIONAL,

IF (cspi)
&EventConditionLists EVENT-CONDITION-LIST OPTIONAL,

ENDIF
&Journals JOURNAL OPTIONAL
}

11.1.1.1 &name

The &name field uniquely identifies the Domain within the VMD. The &name shall be a VMD-specific Object
Name formed according to the rules for MMS Object Names.

11.1.1.2 &Capabilities

The &Capabilities field is a set of implementation specific parameters necessary to partition the total resources of
the VMD for a Domain. The value of elements of this set, represented as character strings, are a local matter.

NOTE The intent of &Capabilities is to convey such parameters as memory allocation, processor assignments, and Input
Output bindings.

11.1.1.3 &state

The &state field specifies the state of the Domain. Each Domain may be in one of five states: loading,
complete, incomplete, ready, or in-use. The possible values of the &state field depend on the method
of creating the Domain. Prior to its creation, the Domain is non-existent. In order to complete the state table, a
non-existent Domain is described as being in the non-existent state. The loading state is an intermediate
state that occurs during the loading process. The Domain enters the ready state following a successful
Download. The in-use state differs from the ready state in that one or more Program Invocations have been
defined using this Domain. The complete state is an intermediate state that occurs after the last
DownloadSegment has been received but before the Download Sequence has been terminated. The
incomplete state is an intermediate state that occurs when a Download Sequence is terminated before the
loading process is complete. States d1-d9 represent intermediate states, i.e., states between a request and its
response.

 DomainState ::= INTEGER {
non-existent (0),
loading (1),
ready (2),
in-use (3),
complete (4),
incomplete (5),
d1 (7),
d2 (8),
d3 (9),
d4 (10),
d5 (11),
d6 (12),
d7 (13),
d8 (14),
d9 (15) } (0..15)

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 89

11.1.1.4 &aAssociation

This field identifies the application association over which the Domain is being downloaded. During the process
of downloading a Domain, the Domain is dependent on the Application Association over which the Domain was
created. If the Application Association is lost before the Domain is placed in the ready state, the Domain shall be
deleted. There are no MMS services that report the value of this field.

11.1.1.5 &accessControl

The &accessControl field identifies an Access Control List object that provides conditions under which this
Domain may not be uploaded, deleted, or have its access control or name changed.

11.1.1.6 &sharable

The &sharable field specifies whether this Domain may be used in more than one Program Invocation definition at
the same time.

NOTE A Domain that is read-only, that is, is not altered by the action of the Program Invocation, is normally sharable. In
many cases, Domains that can be modified by execution of a Program Invocation are not sharable; however, by
careful coordination a Domain could be modified by two Program Invocations simultaneously, thereby providing a
means of inter-process communication. Sharable does not necessarily imply read-only.

11.1.1.7 &ProgramInvocations

This field identifies a set Program Invocations that currently use this Domain. If the Domain is not sharable, this
set has at most one Program Invocation. If the Domain is in the in-use state, the set shall not be empty.

11.1.1.8 &uploadsInProgress

This field specifies the number of Upload Sequences currently active for this Domain. The value of this field shall
be the number of ULSMs that exist for this Domain. The value zero indicates that no upload is currently in
progress for this Domain.

11.1.1.9 &NamedVariables

This field identifies the Named Variable objects whose name scope is Domain-specific and which are contained
within this Domain. This field is present only if the vnam parameter CBB has been negotiated. Named Variables
are described in clause 14.

11.1.1.10 &NamedVariableLists

This field identifies the Named Variable List objects whose name scope is Domain-specific and which are
contained within this Domain. This field is present only if the vnam and the vlis parameter CBBs have been
negotiated. Named Variable Lists are described in clause 14.

11.1.1.11 &NamedTypes

This field identifies the Named Type objects whose name scope is Domain-specific and which are contained
within this Domain. This field is present only if the vnam parameter CBB has been negotiated. Named Types are
described in clause 14.

11.1.1.12 &EventConditions

This field identifies the Event Condition objects whose name scope is Domain-specific and which are contained
within this Domain. Event Conditions are described in clause 19.

11.1.1.13 &EventActions

This field identifies the Event Action objects whose name scope is Domain-specific and which are contained
within this Domain. Event Actions are described in clause 20.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved90

11.1.1.14 &EventEnrollments

This field identifies the Event Enrollment objects whose name scope is Domain-specific and which are contained
within this Domain. Event Enrollments are described in clause 21.

11.1.1.15 &EventConditionLists

This field identifies the Event Condition List objects whose name scope is Domain-specific and which are
contained within this Domain. Event Condition Lists are described in clause 22.

11.1.1.16 &Journals

This field identifies the Journal objects whose name scope is Domain-specific and which are contained within this
Domain. Journals are described in clause 23.

11.1.2 Upload State Machine

This clause introduces the model of an Upload State Machine

 ULSM ::= CLASS {
&ulsmID INTEGER UNIQUE,

 -- shall be unique among all ULSM's within this application association
&domain Identifier,
&ulsmState ULState }

 ULState ::= INTEGER {
non-existent (0),
uploading (1),
uploaded (2),
u1 (3),
u2 (4),
u3 (5),
u4 (6) } (0..6)

11.1.2.1 &ulsmID

This field identifies the upload among all uploads active on this association.

11.1.2.2 &domain

This field identifies the Domain that is being uploaded.

11.1.2.3 &ulsmState

This field identifies the state of the upload.

11.1.3 Domain State Diagrams

In Figure 8, intermediate states (states that exist only between an indication primitive and the response primitive or
between a request primitive and a confirm primitive) are indicated by boxes labelled Dn. While these states are
transitory, the Domain may be in such a state for some period of time, and may be reported in the same manner as
major states.

Domains that are predefined or that come into existence through local means are restricted to the ready and
in-use states of this diagram. The term Program Invocation Count refers to the number of Program Invocations
that are currently bound to this Domain. (See clause 12 for information regarding the binding of Program
Invocations to Domains.)

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 91

Non-Existent

D 1 D 9

Loading

D 2 Incomplete

Complete

D 3

Ready
D 4 D 7

In-UseD 5 D 6

D 8

1 3

2
27

27

4 5

6

7

27

13

8
8

9,27

27

25

27

10
12,27

27 26

24

18,30

14

16,28

15,29

27

20

21,27

22

17

19,31

23,27

Figure 8 - Domain State Diagram

Transitions of the State Diagram are as follows:

1 - InitiateDownloadSequence.indication
2 - InitiateDownloadSequence.response (+)
3 - InitiateDownloadSequence.response (-)
4 - DownloadSegment.request
5 - DownloadSegment.confirm (+) More Follows = true
6 - DownloadSegment.confirm (+) More Follows = false
7 - DownloadSegment.confirm (-)
8 - TerminateDownloadSequence.request Discard present
9 - TerminateDownloadSequence.confirm (+) or (-)
10 - TerminateDownloadSequence.request Discard not present
11 - TerminateDownloadSequence.confirm (+)

12 - TerminateDownloadSequence.confirm (-)
13 - TerminateDownloadSequence.request Discard present
14 - CreateProgramInvocation.indication

Program Invocation count = 0
15 - CreateProgramInvocation.response (+)
16 - CreateProgramInvocation.response (-)
17 - DeleteProgramInvocation.indication

Program Invocation count = 1
18 - DeleteProgramInvocation.response (+)
19 - DeleteProgramInvocation.response (-)

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved92

20 - CreateProgramInvocation.indication
Program Invocation count > 0

21 - CreateProgramInvocation.response (+) or (-)
22 - DeleteProgramInvocation.indication

Program Invocation count > 1
23 - DeleteProgramInvocation.response (+) or (-)
24 - DeleteDomain.indication

25 - DeleteDomain.response (+)
26 - DeleteDomain.response (-)
27 - Abort.indication
28 - Abort.indication Program Invocation creation failed
29 - Abort.indication Program Invocation creation succeeded
30 - Abort.indication Program Invocation deletion succeeded
31 - Abort.indication Program Invocation deletion failed

11.1.4 Segmented Services

There are two sets of services within Domain Management in which the services are required to occur in groups.
These are the Download Sequence services and the Upload Sequence services.

11.1.4.1 Download Sequence

The Domain Download Sequence may be used to accomplish the creation and loading of &content of a Domain
from the MMS client to the MMS server. Although the MMS client initiates this sequence by requesting the
InitiateDownloadSequence Service, subsequent services are controlled by the MMS server. The MMS server shall
issue zero or more DownloadSegment Service requests (as required) followed by a request for the
TerminateDownloadSequence Service.

Since a Domain may only have one Download Sequence active at any time, the Domain Name is sufficient to
identify the Download Sequence being performed. The MMS server shall maintain state information of the
Download Sequence as part of the state of the Domain.

If, during the course of a Download Sequence, the association between the client and server is lost, the associated
Domain shall be deleted and any partial transfer of information shall be lost. If the association is lost after
completion of the Download Sequence, that is, when the Domain is in the ready or in-use state, the Domain
shall be unaffected by the loss of association.

If, during the course of a Download Sequence, any of the service requests is cancelled, the responding MMS-user
shall refuse the cancel request unless it is able to maintain the integrity of the Domain. When the processing has
progressed to the point that the integrity of the Domain cannot be maintained if cancelled, the &cancelable field of
the Transaction object shall be set to false.

11.1.4.2 Upload Sequence

These services may be used to transfer the Domain Content from the MMS server to the MMS client. Upload is
accomplished by the MMS client requesting the InitiateUploadSequence service, zero or more UploadSegment
services (as required), and a TerminateUploadSequence service, in that order.

If, during the course of an Upload Sequence, the association between the client and server is lost, the Upload
Sequence shall be terminated and the associated Upload State Machine (ULSM) shall be deleted. The Domain
shall be unaffected. Each successful InitiateUploadSequence service invocation shall create an ULSM that is
identified by a unique (among all active ULSMs on the association) ULSM ID. The ULSM shall be created and
the ULSM ID assigned at the time of the InitiateUploadSequence by the MMS server. An ULSM may only be
referenced via the assigned ULSM ID, and only over the association through which it was assigned. The ULSM
shall be deleted and the ULSM ID released via the TerminateUploadSequence service, or when the association is
aborted.

If, during the course of an Upload Sequence, any of the service requests is cancelled, the MMS server shall refuse
the cancel request unless it is able to maintain the integrity of the Upload State Machine. When the processing has
progressed to the point that the integrity of the state machine cannot be maintained if cancelled, the &cancelable
field of the Transaction object shall be set to false.

The MMS services for uploading a Domain are interdependent. This interdependence is specified by the Upload
State Machines (ULSM) given in Figure 9.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 93

Non-Existent

 U1

U2 U3

 U4Uploading

Uploaded

1 3

2

10

10

10

10 8

4 6

5

7

10

8

9 10

8

Figure 9 - Upload State Machines

Transitions:
1 - InitiateUploadSequence.indication
2 - InitiateUploadSequence.response(+)
3 - InitiateUploadSequence.response(-)
4 - UploadSegment.indication
5 - UploadSegment.response(+) moreFollows = false

6 - UploadSegment.response(+) moreFollows = true
7 - UploadSegment.response(-)
8 - TerminateUploadSequence.indication
9 - TerminateUploadSequence.response
10 - Abort.indication or Abort.request

11.2 InitiateDownloadSequence service

The InitiateDownloadSequence service is used by the MMS client to request the MMS server to create the named
Domain and to begin its loading.

11.2.1 Structure

The structure of the component service primitives is shown in Table 31.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved94

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Domain Name
 List of Capabilities
 Sharable

Result(+)

Result(-)
 Error Type

M
M
M
M

M(=)
M(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 31 - InitiateDownloadSequence service

11.2.1.1 Argument

This parameter shall convey the parameters of the InitiateDownloadSequence service request.

11.2.1.1.1 Domain Name

This parameter, of type Identifier, shall specify the name of the Domain (at the MMS server) that is to be
downloaded.

11.2.1.1.2 List Of Capabilities

This parameter, of type character string, shall represent an implementation specific limitation on the resources of
the VMD that are to be part of this Domain. The List of Capabilities becomes a defining element of the Domain.
If the List of Capabilities is not valid and available within the resources of the VMD, a Result(-) shall be returned.
The determination of valid and available is a local matter.

NOTE The only capabilities that need to be included are those that need be specified in order that the MMS server can
properly perform this service request. It is preferable that this parameter not be used at all, since this case promotes
the greatest degree of inter-operability. To indicate this situation, a list with zero elements should be specified.

11.2.1.1.3 Sharable

This parameter, of type boolean, shall specify if true that following loading the Domain may be used by more than
one Program Invocation concurrently. Such Domains are said to be sharable. The value false shall specify that
the Domain may be used by only one Program Invocation.

11.2.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

11.2.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

11.2.2 Service Procedure

11.2.2.1 Pre-Conditions

If any of the following conditions is not satisfied, the MMS server shall return a Result(-):

a) The proposed Domain name is not currently in use as a Domain name within the VMD.

b) The list of capabilities is valid and available.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 95

c) The conditions specified for Service Class = LOAD are satisfied in the Access Control List object
referenced by the &accessControl field of the VMD.

11.2.2.2 Actions

The MMS server shall create a new Domain and initialize it as follows:

a) The &name field of the newly created Domain shall be the Domain Name parameter of the service
indication.

b) The &Capabilities field of the newly created Domain shall be the List of Capabilities parameter of the
service indication.

c) The &state field of the newly created Domain shall be loading.

d) The &aAssociation field of the newly created Domain shall be set to indicate the association over which
the service indication was received.

e) The &accessControl field of the newly created Domain shall be set to an Access Control List object that
will report the value of MMS Deletable as true (see 9.1.4). The predefined symbol 'M_Deletable' (see
25.3.2.1) may be used for this purpose.

f) The &sharable field of the newly created Domain shall be the Sharable parameter of the service indication.

g) The &ProgramInvocations field of the newly created Domain shall be set to an empty set.

h) The &uploadsInProgress field of the newly created Domain shall be zero.

i) The &content field of the newly created Domain shall be initialized to the null object.

The MMS server shall add a reference to the newly created Domain to the &Domains field of the Access Control
List object referenced by the &accessControl field of the Domain. The MMS server shall perform any other
actions necessary to prepare for the Download Sequence, and shall issue a Result(+) service primitive.

11.3 DownloadSegment service

This service is used by the MMS server to request that a segment of download information be transferred by the
MMS client.

NOTE This service is different from most MMS services in that the MMS server issues the request service primitive and
receives the confirm service primitive, while the MMS client receives the indication service primitive and issues the
response service primitive (see 26.2.1.1).

11.3.1 Structure

The structure of the component service primitives is shown in Table 32.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved96

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Domain Name

Result(+)
 Load Data
 More Follows

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M

S
M

S(=)
M(=)
M(=)

S(=)
M(=)

Table 32 - DownloadSegment service

11.3.1.1 Argument

This parameter shall convey the parameter of the DownloadSegment service request.

11.3.1.1.1 Domain Name

This parameter, of type Identifier, shall specify the Domain that is to be loaded. The Domain shall be in the
loading state.

11.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

11.3.1.2.1 Load Data

This parameter shall contain the information to be downloaded. This parameter shall be either an octet string or an
externally encoded value. The MMS server shall use this information to construct the &content field of the
Domain. As part of this process, the MMS server shall create and assign values to all the subordinate objects of
this Domain. This International Standard does not specify transformation services for this data.

NOTE This International Standard makes no requirements regarding the nature of the information in Load Data. Load Data
may have been created as a result of an Upload Sequence (see 11.5) or as a result of a target device specific
programming function (such as an APT post-processor).

11.3.1.2.2 More Follows

This parameter, of type boolean, shall indicate whether (true) or not (false) any additional Load Data remains to be
transmitted for the Domain named in the Download Sequence. This parameter shall be false if Load Data is a zero
length string.

11.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 97

11.3.2.1 Preconditions

The MMS client shall have received a positive response to an InitiateDownloadSequence request naming the
Domain identified in the Domain Name parameter of this service indication, and shall not have received a
TerminateDownloadSequence indication for this same Domain. If this condition is not satisfied, the MMS client
shall return a Result(-) response to the service request.

11.3.2.2 Actions

The MMS client shall prepare Load Data for transmission to the MMS server. The procedure used to create and
segment the Load Data is a local matter. If there is such Load Data to transmit, it shall become the value of the
Load Data parameter and the More Follows parameter shall be set equal to true or false, according to whether
there remains more Load Data to be transmitted on a subsequent DownloadSegment service response. If there is
no more Load Data to transmit, the MMS client shall set the Load Data Parameter to a zero length string and the
More Follows parameter equal to false.

The MMS server shall receive the Load Data segments and interpret the Load Data according to a Domain-specific
format, storing it as appropriate. If the More Follows parameter is false, the Domain shall be placed in the
complete state following completion of this service. If More Follows is true, the Domain shall remain in the
loading state.

If the MMS client detects an error that invalidates the content of the Domain being downloaded, it shall issue a
Result(-) response to the service request. Otherwise, it shall issue a Result(+) response to the service request.

If the MMS server receives a Result(-) confirm as a result of this service request, it shall issue a
TerminateDownloadSequence request (see 11.4). If the MMS server receives a Result(+) confirm with the More
Follows parameter value of false, it shall issue a TerminateDownloadSequence request (see 11.4). Otherwise it
shall issue additional DownloadSegment service requests, as appropriate.

11.4 TerminateDownloadSequence service

The TerminateDownloadSequence service is used by the MMS server to indicate to the MMS client that the
Download Sequence is complete.

NOTE This service is different from most MMS services in that the MMS server issues the request service primitive and
receives the confirm service primitive, while the MMS client receives the indication service primitive and issues the
response service primitive (see 26.2.1.1).

11.4.1 Structure

The structure of the component service primitives is shown in Table 33.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Domain Name
 Discard

Result(+)

Result(-)
 Error Type

M
M
C

M(=)
M(=)
C(=)

S

S
M

S(=)

S(=)
M(=)

Table 33 - TerminateDownloadSequence service

11.3.2 Service Procedure

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved98

11.4.1.1 Argument

This parameter shall convey the parameters of the TerminateDownloadSequence service request.

11.4.1.1.1 Domain Name

This parameter, of type Identifier, shall specify the Domain whose Download Sequence is to be terminated. The
Domain shall be in the loading, complete, or incomplete state.

11.4.1.1.2 Discard

This parameter, of type ServiceError, shall indicate if present that the downloaded Domain has been deleted. If
the Domain has been deleted, this parameter shall provide an indication of the problem encountered. In that case,
the Download Sequence shall have been aborted and the MMS server shall have discarded any portion of the
Domain Content that has been received. Otherwise, the downloaded Domain Content shall be retained and the
Domain shall be placed in the ready state.

11.4.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

11.4.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

11.4.2 Service Procedure

11.4.2.1 Preconditions

The MMS client shall have received a positive response to an InitiateDownloadSequence request naming the
Domain identified in the Domain Name parameter of this service indication, and shall not have received a
TerminateDownloadSequence indication for this same Domain. If this condition is not satisfied, the MMS client
shall return a Result(-) response to the service request.

11.4.2.2 Actions

If the MMS server detects an unrecoverable error in the course of the Download Sequence, it shall provide the
Discard parameter describing the error. If the MMS client has provided a Result(-) to a DownloadSegment request
(see 11.3.2), the MMS server shall provide a Discard parameter indicating that the error was detected by the MMS
client. If the MMS server has successfully completed the Download Sequence (and therefore has not set the
Discard parameter) and the MMS client indicates success by returning a Result(+) to the
TerminateDownloadSequence request, the Download Sequence has succeeded. Otherwise the Download
Sequence shall have failed.

If the Download Sequence has succeeded, the Domain shall be placed in the ready state. If the Download
Sequence has failed, any Load Data shall be discarded, the reference to the Domain shall be removed from the
Access Control List object referenced by the &accessControl field of the Domain, and the Domain shall be
deleted.

11.5 InitiateUploadSequence service

The InitiateUploadSequence service is used by the MMS client to request the MMS server to prepare to upload the
Domain of the specified name.

11.5.1 Structure

The structure of the component service primitives is shown in Table 34.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 99

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Domain Name

Result(+)
 ULSM ID
 List of Capabilities

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M

S
M

S(=)
M(=)
M(=)

S(=)
M(=)

Table 34 - InitiateUploadSequence service

11.5.1.1 Argument

This parameter shall convey the parameter of the InitiateUploadSequence service request.

11.5.1.1.1 Domain Name

This parameter, of type Identifier, shall specify the name of the Domain whose content is to be transferred to the
MMS client (uploaded).

11.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

11.5.1.2.1 ULSM ID

This parameter, of type integer, shall specify the ULSM object that is created as a result of this request.

11.5.1.2.2 List Of Capabilities

This parameter, of type list of character string, shall identify the &Capabilities that were used in the creation or
definition of this Domain.

NOTE The only Capabilities that need to be included are those that must be specified in order that the MMS server can
properly perform this service. It is preferable that this parameter not be used at all, since this promotes the greatest
degree of inter-operability. To indicate this, a list with zero elements should be specified.

11.5.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

11.5.2 Service Procedure

11.5.2.1 Preconditions

The following conditions shall be satisfied:

a) The specified Domain exists and is in the ready or the in-use state.

b) Any conditions specified for Service Class = STORE are satisfied in the Access Control List object
referenced by the &accessControl field of the VMD.

c) Any conditions specified for Service Class = STORE are satisfied in the Access Control List object
referenced by the &accessControl field of this Domain.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved100

If any of these conditions are not met, the MMS server shall return a Result(-).

11.5.2.2 Actions

The MMS server shall create a ULSM and assign it a unique integer value. A reference to the new ULSM shall be
added to the &Ulsms field of the Application Association. The MMS server shall take whatever other actions are
necessary to prepare to upload the specified Domain.

NOTE If an Upload Sequence is undertaken for a Domain that is in the in-use state, the &content may be changing
during the time the Upload Sequence is being performed. This may result in incomplete or inconsistent data being
uploaded. Interpretation of the upload in this situation is a local matter.

11.6 UploadSegment service

The UploadSegment service is used by the MMS client to request the transfer of a segment of upload data from the
specified Domain by the MMS server.

11.6.1 Structure

The structure of the component service primitives is shown in Table 35.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 ULSM ID

Result(+)
 Load Data
 More Follows

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M

S
M

S(=)
M(=)
M(=)

S(=)
M(=)

Table 35 - UploadSegment service

11.6.1.1 Argument

This parameter shall convey the parameter of the UploadSegment service request.

11.6.1.1.1 ULSM ID

This parameter, of type integer, shall specify the instance of the ULSM that controls this transfer. The Domain to
be uploaded is implicitly identified by this parameter.

11.6.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

11.6.1.2.1 Load Data

This parameter shall contain the requested Load Data from the MMS server. This parameter shall be either an
octet string or an externally encoded value.

11.6.1.2.2 More Follows

This parameter, of type boolean, shall indicate whether (true) or not (false) more Load Data remains to be
transferred to complete the Upload Sequence. This parameter shall be false if Load Data is a zero length string.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 101

11.6.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

11.6.2 Service Procedure

11.6.2.1 Preconditions

The Upload State Machine identified by the ULSM ID shall exist. If this condition is not satisfied, a Result(-)
shall be returned.

NOTE This condition is equivalent to the statement that a prior InitiateUploadSequence request has been received and a
positive response issued, and that a corresponding TerminateUploadSequence request has not been received.

11.6.2.2 Actions

The MMS server shall provide the content of each upload segment such that it is formatted for receipt as Load
Data in a later DownloadSegment (download) service. If the Load Data cannot be placed in this format, a
Result(-) response shall be returned. If the end of the Load Data has been reached in this sequence, the MMS
server shall return More Follows equals false as part of its response.

11.7 TerminateUploadSequence service

The TerminateUploadSequence service is used by the MMS client to request that the MMS server terminate an
Upload Sequence. In particular, the TerminateUploadSequence service causes the corresponding ULSM to be
deleted, whether or not the service completed or was successful.

11.7.1 Structure

The structure of the component service primitives is shown in Table 36.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 ULSM ID

Result(+)

Result(-)
 Error Type

M
M

M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 36 - TerminateUploadSequence service

11.7.1.1 Argument

This parameter shall convey the parameter of the TerminateUploadSequence service request.

11.7.1.1.1 ULSM ID

This parameter, of type integer, shall identify the instance of the ULSM whose Upload Sequence is to be
terminated.

11.7.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved102

11.7.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

11.7.2 Service Procedure

11.7.2.1 Preconditions

The Upload State Machine identified by the ULSM ID shall exist. If this condition is not satisfied, a Result(-)
shall be returned.

NOTE This condition is equivalent to the statement that a prior InitiateUploadSequence request has been received and a
positive response issued, and that a corresponding TerminateUploadSequence request has not been received.

11.7.2.2 Procedure

The MMS client shall request the TerminateUploadSequence service following completion of the Upload
Sequence or following an error reported by the MMS server in a Result(-) response to a UploadSegment service.
The reference to this ULSM in the &Ulsms field of the Application Association shall be removed. Following
either the successful or unsuccessful completion of this service, the ULSM shall be deleted. If the MMS server
detects a error in the Upload Sequence, it shall return an Result(-) response. Such a response shall be returned, for
instance, if the MMS client requests the TerminateUploadSequence service before the MMS server has returned
the More Follows parameter with a value equal to false.

11.8 RequestDomainDownload service

The RequestDomainDownload service is used by the MMS server to request that the MMS client initiate a
Download Sequence with the MMS server.

NOTE This service is different from most MMS services in that the MMS server issues the request service primitive and
receives the confirm service primitive, while the MMS client receives the indication service primitive and issues the
response service primitive (see 26.2.1.1).

11.8.1 Structure

The structure of the component service primitives is shown in Table 37.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Domain Name
 List of Capabilities
 Sharable
 File Name

Result(+)

Result(-)
 Error Type

M
M
U
M
M

M(=)
M(=)
U(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 37 - RequestDomainDownload service

11.8.1.1 Argument

This parameter shall convey the parameters of the RequestDomainDownload service request.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 103

11.8.1.1.1 Domain Name

This parameter, of type Identifier, shall specify the &name field of the Domain that is to be downloaded.

11.8.1.1.2 List Of Capabilities

This optional parameter, of type list of character string, shall be used, if present, as the value of the List of
Capabilities parameter in the subsequent Initiate Download Sequence service request.

11.8.1.1.3 Sharable

This parameter, of type boolean, shall indicate if true that the Domain may be used by multiple Program
Invocations. Such Domains are said to be sharable. Otherwise, the Domain may be used by only one Program
Invocation.

11.8.1.1.4 File Name

This parameter, of type FileName, shall specify the name of the file (as known by the MMS client) containing the
information to be loaded.

11.8.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

11.8.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

11.8.2 Service Procedure

11.8.2.1 Preconditions

If the file indicated by the File Name parameter does not exist or cannot be accessed, a Result(-) response shall be
returned.

11.8.2.2 Actions

Following receipt of the RequestDomainDownload indication service primitive, the MMS client shall request the
InitiateDownloadSequence service as described in 11.2. The values of the Domain Name and Sharable parameters
received in the indication service primitive shall be used as the values of the parameters of the same name for the
InitiateDownloadSequence service. If the List of Capabilities parameter is present in the service indication, this
value shall be used as the value of the parameter of the same name for the Initiate Download Sequence service
request; otherwise, the value of this parameter of the Initiate Download Sequence service request shall be a local
matter. The file identified by the File Name parameter shall be used as the source of the load data.

NOTE 1 If the Domain Content at the MMS client was the result of a previous Domain Upload, the value of the List of
Capabilities parameter retained from that upload will normally be used as the value of the List of Capabilities
parameter in the Initiate Download Sequence service request.

NOTE 2 A request to cancel a RequestDomainDownload service may require very complex processing if the procedure has
progressed to the point where a Domain has been created. It is a local matter when to set the &cancelable field of the
RequestDomainDownload Transaction object to false.

Following completion of the TerminateDownloadSequence service, the MMS client shall issue a response to the
RequestDomainDownload service. If the load has completed successfully, the Result(+) parameter in the response
primitive shall indicate success of the RequestDomainDownload service. If any element of the Download
Sequence returns a Result(-) response, that response shall be reflected in a Result(-) response to the
RequestDomainDownload service.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved104

11.9 RequestDomainUpload service

The RequestDomainUpload service is used by the MMS server to request that the contents of a specified Domain
located at the MMS server be uploaded to the MMS client.

NOTE This service is different from most MMS services in that the MMS server issues the request service primitive and
receives the confirm service primitive, while the MMS client receives the indication service primitive and issues the
response service primitive (see 26.2.1.1).

11.9.1 Structure

The structure of the component service primitives is shown in Table 38.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Domain Name
 File Name

Result(+)

Result(-)
 Error Type

M
M
M

M(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 38 - RequestDomainUpload service

11.9.1.1 Argument

This parameter shall convey the parameters of the RequestDomainUpload service request.

11.9.1.1.1 Domain Name

This parameter, of type Identifier, shall identify the Domain whose contents are to be uploaded.

11.9.1.1.2 File Name

This parameter, of type FileName, shall specify the file name as known by the MMS client to be used to store the
Domain upload.

11.9.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

11.9.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

11.9.2 Service Procedure

11.9.2.1 Preconditions

If the file indicated by the File Name parameter does not exist or cannot be accessed, a Result(-) response shall be
returned.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 105

11.9.2.2 Actions

The MMS client shall perform the Upload Sequence as described in 11.5 and store the resulting Load Data in the
named file. The value of the List of Capabilities shall be retained by the MMS client and associated with the Load
Data.

NOTE A request to cancel a RequestDomainUpload service may require very complex processing if the procedure has
progressed to the point where an Upload State Machine has been created. It is a local matter when to set the
&cancelable field of the RequestDomainUpload Transaction Object to false.

Following completion of the TerminateUploadSequence service, the MMS client shall issue a response to the
RequestDomainUpload service. If the upload is completed successfully, the Result(+) parameter in the response
primitive shall indicate success of the RequestDomainUpload service. If any element of the Upload Sequence
returns a Result(-) response, that response shall be reflected in a Result(-) response to the RequestDomainUpload
service.

11.10 LoadDomainContent service

The LoadDomainContent service is used by the MMS client to request that the MMS server load a file from its
own filestore or from a third party into a designated Domain. A typical sequence of operations involving a third
party that employs MMS services is shown in Figure 10.

 MMS client MMS server Third party

 LoadDomainContent
 request

 >

 RequestDomainDownload
 request

 >

 < InitiateDownloadSeq
 request

 InitiateDownloadSeq
 response

 >

 DownloadSegment
 request

 >

< DownloadSegment
 response

 ...

 ...

 TerminateDownloadSeq
 request

 >

< TerminateDownloadSeq
 response

< RequestDomainDownload
 response

< LoadDomainContent
 response

Figure 10 - LoadDomainContent

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved106

11.10.1 Structure

The structure of the component service primitives is shown in Table 39.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Domain Name
 List of Capabilities
 Sharable
 File Name
 Third Party

Result(+)

Result(-)
 Error Type

M
M
U
M
M
U

M(=)
M(=)
U(=)
M(=)
M(=)
U(=)

S

S
M

S(=)

S(=)
M(=)

tpy

Table 39 - LoadDomainContent service

11.10.1.1 Argument

This parameter shall convey the parameters of the LoadDomainContent service request.

11.10.1.1.1 Domain Name

This parameter, of type Identifier, shall specify the &name field of the Domain that is to be loaded.

11.10.1.1.2 List Of Capabilities

This optional parameter, of type list of character string, shall be used if present in the creation of the named
Domain.

11.10.1.1.3 Sharable

This parameter, of type boolean, shall indicate if true that the Domain can be used by several Program Invocations
concurrently. Otherwise, the Domain can be used by only one Program Invocation.

11.10.1.1.4 File Name

This parameter, of type FileName, shall specify the name of the file containing the information to be loaded.

11.10.1.1.5 Third Party

This parameter, of type ApplicationReference, shall specify the Application Reference of the Application Process
through which the named file may be accessed. Support of processing for this parameter is an implementation
option that shall be implemented if support for the tpy parameter conformance building block is claimed. If it is
implemented, its use is a user option. If this parameter is absent, the method of access to this file is a local matter.

11.10.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 107

11.10.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

11.10.2 Service Procedure

11.10.2.1 Preconditions

The following conditions shall be met:

a) no Domain of the name given by the Domain parameter exists;

b) any conditions specified for Service Class = LOAD are satisfied in the Access Control List object
referenced by the &accessControl field of the VMD;

c) if a Third Party is specified, the MMS client is able to establish and maintain an association with the Third
Party.

If any of these conditions are not met, a Result(-) shall be returned.

11.10.2.2 Actions

The MMS server shall perform the LoadDomainContent Service as follows:

a) create and initialize a Domain following the service procedure described in 11.2.2.

b) if a Third Party is specified, establish an association with that application if none exists; thereafter take
appropriate action to cause the named file to be obtained and the named Domain to be loaded.

c) if Third Party is not specified, perform the necessary steps to obtain the file through local means and load it
into the specified Domain.

d) if loading is successful, place the Domain in the ready state.

NOTE A request to cancel a LoadDomainContent service may require very complex processing if the procedure has
progressed to the point where a Domain has been created. It is a local matter when to set the &cancelable field of the
LoadDomainContent Transaction Object to false.

If the load is completed successfully, a Result(+) response primitive shall be issued. If the load is not completed
successfully, a Result(-) response primitive shall be issued.

11.11 StoreDomainContent service

The StoreDomainContent service is used by an MMS client to request that the contents of a specified Domain at
the MMS server be stored in a file on a filestore. "Storing" a Domain requires whatever processing is necessary
such that it may be loaded later using the LoadDomainContent service. A typical sequence of operations
involving a third party that employs MMS services is shown below in Figure 11.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved108

 MMS client MMS server Third party

 StoreDomainContent
 request

 >

 RequestDomainUpload
 request

 >

 < InitiateUploadSeq
 request

 InitiateUploadSeq
 response

 >

< UploadSegment
 request

 UploadSegment
 response

 >

 ...

 ...

< TerminateUploadSeq
 request

 TerminateUploadSeq
 reqsponse

 >

< RequestDomainDownload
 response

< StoreDomainContent
 response

Figure 11 - StoreDomainContent

11.11.1 Structure

The structure of the component service primitives is shown in Table 40.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Domain Name
 File Name
 Third Party

Result(+)

Result(-)
 Error Type

M
M
M
U

M(=)
M(=)
M(=)
U(=)

S

S
M

S(=)

S(=)
M(=)

tpy

Table 40 - StoreDomainContent service

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 109

11.11.1.1 Argument

This parameter shall convey the parameters of the StoreDomainContent service request.

11.11.1.1.1 Domain Name

This parameter, of type Identifier, shall identify the Domain whose contents are to be stored to a file.

11.11.1.1.2 File Name

This parameter, of type FileName, shall identify the file in which the Domain is to be stored.

11.11.1.1.3 Third Party

This optional parameter, of type ApplicationReference, shall identify the Third Party on which the filestore resides
that is to receive the contents of the named Domain. The presence of this parameter is an implementation option
that shall be implemented if support of the tpy parameter conformance building block is claimed. If tpy is
implemented, its use is a user option. If this parameter is absent, the method of storing the file is a local matter.

11.11.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

11.11.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

11.11.2 Service Procedure

11.11.2.1 Preconditions

The following conditions shall be met:

a) a Domain of the name given by the Domain parameter exists;

b) any conditions specified for Service Class = STORE are satisfied in the Access Control List object
referenced by the &accessControl field of the VMD.

c) any conditions specified for Service Class = STORE are satisfied in the Access Control List object
referenced by the &accessControl field of this Domain.

d) If Third Party is specified, the MMS client is able to establish and maintain an association with the Third
Party.

If any of these conditions are not met, a Result(-) shall be returned.

11.11.2.2 Actions

The MMS server shall take appropriate action to cause the &content of the Domain to be stored in the indicated
file. The value of the List of Capabilities shall be retained and associated with the Load Data.

NOTE A request to cancel a StoreDomainContent service may require very complex processing if the procedure has
progressed to the point where an Upload State Machine has been created. It is a local matter when to set the
&cancelable field of the StoreDomainContent Transaction Object to false.

If the upload is completed successfully, a Result(+) response shall be issued. If the upload is not completed
successfully, the Result(-) response shall be returned.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved110

11.12 DeleteDomain service

The DeleteDomain service is used by an MMS client to request that an MMS server delete the specified Domain.

11.12.1 Structure

The structure of the component service primitives is shown in Table 41.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Domain Name

Result(+)

Result(-)
 Error Type

M
M

M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 41 - DeleteDomain service

11.12.1.1 Argument

This parameter shall convey the parameter of the DeleteDomain service request.

11.12.1.1.1 Domain Name

This parameter, of type Identifier, shall specify the &name field of the Domain that is to be deleted.

11.12.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

11.12.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

11.12.2 Service Procedure

11.12.2.1 Preconditions

The MMS server shall:

a) verify that specified Domain exists;

b) verify that all the conditions in the Access Control List specified by the &accessControlList field of the
VMD are satisfied for the service class = DELETE (see 9.1.3);

c) verify that all the conditions in the Access Control List specified by the &accessControlList field of the
Domain are satisfied for the service class = DELETE (see 9.1.3);

d) verify that the Domain is in the ready state;

NOTE The requirement that the Domain be in the ready state is equivalent to the requirement that no Program Invocation
be bound to the Domain. Hence, Domains that are currently in use by some Program Invocation cannot be deleted
until the Program Invocation is deleted.

e) verify that there are no uploads in progress for this Domain.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 111

If any of these conditions is not met, the MMS server shall return a Result(-).

11.12.2.2 Actions

The MMS server shall delete the designated Domain by performing the following steps.

a) It shall delete all objects subordinate to the Domain regardless of the state of the Access Control List object
referenced by these subordinate objects. In conjunction with the deletion of any object the MMS server
shall perform any procedure defined for the deletion of that object. For each subordinate object of this
Domain, remove the reference to that object from the corresponding field of the referenced Access Control
List object.

b) It shall remove any references to this Domain or to its subordinate objects from the attributes of other
objects in the VMD. In particular, the Monitored Variable Reference attribute of an Event Condition
object that refers to an MMS variable object subordinate to this Domain shall be removed (see 19.1.1).

c) It shall remove the reference to this Domain from the &Domains field of the Access Control List object
referenced by the &accessControl field of this Domain.

If the service cannot be performed, a Result(-) response shall be returned. Otherwise, a Result(+) shall be
returned.

11.13 GetDomainAttributes service

The GetDomainAttributes service is used by an MMS client to request that an MMS server return the attributes
associated with the specified Domain.

11.13.1 Structure

The structure of the component service primitives is shown in Table 42.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Domain Name

Result(+)
 List of Capabilities
 State
 MMS Deletable
 Sharable
 List of Program Invocations
 Upload in Progress
 Access Control List

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M
M
M
M
M
C

S
M

S(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
C(=)

S(=)
M(=)

aco

Table 42 - GetDomainAttributes service

11.13.1.1 Argument

This parameter shall convey the parameter of the GetDomainAttributes service request.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved112

11.13.1.1.1 Domain Name

This parameter, of type Identifier, shall specify the &name field of the Domain whose attributes are requested.

11.13.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

11.13.1.2.1 List Of Capabilities

This parameter, of type list of character string, shall specify the &Capabilities field of this Domain.

11.13.1.2.2 State

This parameter, of type DomainState, shall specify whether the Domain is in the loading, complete,
incomplete, ready, in-use, or one of the transition states d1 through d9.

11.13.1.2.3 MMS Deletable

Subclause 9.1.4 specifies the value to be returned by this parameter.

11.13.1.2.4 Sharable

This parameter, of type boolean, shall indicate whether (true) or not (false) the Domain may be simultaneously
incorporated in more than one Program Invocation.

11.13.1.2.5 List Of Program Invocations

This parameter, of type list of Identifier, shall specify the Program Invocations that are linked to this Domain. If
the Domain is not sharable. there shall be at most one such Program Invocation. If the Domain is not in the
in-use state, in the state d5, or in the state d6, this list shall be empty.

11.13.1.2.6 Upload In Progress

This parameter, of type integer, shall indicate the number of ULSMs currently active for this Domain. The value
zero indicates that no upload is in progress.

11.13.1.2.7 Access Control List

This parameter, of type Identifier, shall indicate the &name field of the Access Control List object that controls
access to this Domain. This parameter shall not appear unless the aco parameter CBB has been negotiated.

11.13.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

11.13.2 Service Procedure

11.13.2.1 Preconditions

The MMS server shall verify that the specified Domain exists. If the Domain does not exist, a Result(-) shall be
returned.

11.13.2.2 Actions

The MMS server shall return the values of the attributes of the Domain as parameters of the corresponding
Result(+) response.

NOTE The &content field is not included in the response. The names of objects in the contents may be obtained using the
GetNameList Service, specifying Domain-specific scope and naming this Domain (see 10.5).

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 113

12 Program Invocation Management Services

12.1 Introduction and Models

This clause provides an object model for the following object:

PROGRAM-INVOCATION

This clause specifies the following services:

CreateProgramInvocation
DeleteProgramInvocation
Start
Stop
Resume
Reset

Kill
GetProgramInvocationAttributes
Select
AlterProgramInvocationAttributes
ReconfigureProgramInvocation

The MMS model of the Virtual Manufacturing Device (VMD) described in clause 7 introduces several abstract
elements. This clause covers the operations on Program Invocations. Program Invocations may be dynamic in
nature, coming into existence and being removed from the system either by MMS services or by local action.
Program Invocations may also be predefined within the VMD. Services are provided to allow an MMS client to
affect the behaviour of Program Invocations.

A Program Invocation is a dynamic element that most closely corresponds to an execution thread in a
multi-tasking environment. It is either predefined or created, either by MMS services or by local action. It is
composed of a set of Domains together with control information necessary for its execution. The execution of a
Program Invocation can be thought of as a time series of fundamental operations of the underlying device. Further
definition of these fundamental operations is a local matter. In this time history of a Program Invocation, there is
one distinguished state in which the Program Invocation is ready for execution but has not yet begun execution.
This state is referred to as the idle state of the Program Invocation. Some Program Invocations also have a
distinguished state in which the Program Invocation has "completed". Program Invocations that reach this state
have accomplished their purpose and cannot be placed in execution again. This state is called unrunnable, and
Program Invocations that normally reach this state are called non-reusable. Program Invocations that are reusable
will return to the idle state following the normal completion of their execution.

12.1.1 The Program Invocation Object Model

This clause introduces the model of a Program Invocation.

 PROGRAM-INVOCATION ::= CLASS {
&name Identifier,

 -- shall be unique among all Program Invocations
&programInvocationState ProgramInvocationState,
&Domains Identifier,
&accessControl Identifier,
&reusable BOOLEAN,
&monitor BOOLEAN,

 -- The following three fields shall all be present if the value of
 -- monitor is true.
 -- If present, the &name field of each object instance
 -- shall have a value equal to the
 -- &name field of this instance of the PROGRAM-INVOCATION.

&eventCondition Identifier OPTIONAL,
&eventAction Identifier OPTIONAL,
&eventEnrollment Identifier OPTIONAL,
&executionArgument MMSString

IF (csr)
, &errorCode INTEGER,

&control Control-State,
 -- The following field shall be present
 -- if and only if the value of the &control field is controlled.

&controlling-Program-Invocation Identifier,
 -- The following two fields shall be present
 -- if and only if the value of the &control field is controlling.

&Controlled-Program-Invocations Identifier,
&program-Location MMSString OPTIONAL,
&running-Mode Running-Mode,

 -- The following field shall be present
 -- if and only if the value of the &running-Mode field is cycle-limited

&remaining-Cycle-Count INTEGER OPTIONAL,

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved114

 -- The following field shall be present
 -- if and only if the value of the &running-Mode field is step-limited

&remaining-Step-Count INTEGER OPTIONAL
ENDIF

}

12.1.1.1 &name

The &name field uniquely identifies the Program Invocation within the VMD. The &name shall be a VMD-
specific Object Name formed according to the rules for MMS Object Names.

12.1.1.2 &programInvocationState

The &programInvocationState field shall indicate the principal states of the Program Invocation. In order to
complete state diagrams, the value non-existent is added to this list to describe the condition before a
Program Invocation is created.

 ProgramInvocationState ::= INTEGER {
non-existent (0),
unrunnable (1),
idle (2),
running (3),
stopped (4),
starting (5),
stopping (6),
resuming (7),
resetting (8) } (0..8)

12.1.1.2.1 unrunnable

This state shall denote a condition in which the Program Invocation may no longer be executed, but has not yet
been deleted. This state may be reached by the completion of the Program Invocation if the &reusable field is
false or through explicit MMS service action or through other local action.

12.1.1.2.2 idle

This state shall denote the condition of a Program Invocation at a time before it is placed in operation.

NOTE If the Program Invocation is implemented through a sequential procedural programming language, this state may
correspond to the "beginning of the program".

12.1.1.2.3 running

This state shall denote the condition of a Program Invocation during its execution. Further definition of
"execution" is a local matter. However, the running state is usually associated with a process that changes the
constituent elements of at least one of its subordinate Domains.

12.1.1.2.4 stopped

This state shall denote a condition in which the Program Invocation is at an intermediate state between the onset of
execution and completion. However, execution has ceased and the constituent elements of the subordinate
Domains are no longer changing due to the action of this Program Invocation.

12.1.1.2.5 starting

This state shall be a transitory state of the Program Invocation between the idle and the running states. If the
Program Invocation is placed in the running state through the action of the MMS Start service, this state
corresponds to the time between the receipt of the Start service indication primitive and the issuance of the Start
service response primitive. While in the starting state, the VMD may perform one or more initialization
procedures.

12.1.1.2.6 stopping

This state shall be a transitory state of the Program Invocation between the running and the stopped states. If
the Program Invocation is placed in the stopped state through the action of the MMS Stop service, this state
corresponds to the time between the receipt of the Stop service indication primitive and the issuance of the Stop
service response primitive. While in the stopping state, the VMD may perform one or more procedures.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 115

12.1.1.2.7 resuming

This state shall be a transitory state of the Program Invocation between the stopped and the running states. If
the Program Invocation is placed in the running state through the action of the MMS Resume service, this state
corresponds to the time between the receipt of the Resume service indication primitive and the issuance of the
Resume service response primitive. While in the resuming state, the VMD may perform one or more
procedures.

12.1.1.2.8 resetting

This state shall be a transitory state of the Program Invocation between the stopped state and the idle state. If
the Program Invocation is placed in the idle state through the action of the MMS Reset service, this state
corresponds to the time between the receipt of the Reset service indication primitive and the issuance of the Reset
service response primitive. While in the resetting state, the VMD may perform one or more procedures.

12.1.1.3 &Domains

This field shall be a set of Domains that are subordinate to this Program Invocation. The set shall contain at least
one Domain.

12.1.1.4 &accessControl

This field identifies an Access Control List object that provides conditions under which this Program Invocation
may be executed, deleted, or have its access control changed, or any combination of the above.

12.1.1.5 &reusable

This field shall indicate whether (true) or not (false) the Program Invocation will return to the idle state
following normal completion of its execution. If false, the Program Invocation will move to the unrunnable
state following normal execution.

12.1.1.6 &monitor

This field indicates whether or not program monitoring is in effect for this Program Invocation. A Program
Invocation that is being monitored uses the Event Management facilities of MMS to inform an enrolled MMS-user
whenever the Program Invocation leaves the running state. It does this by creating the objects listed below.

12.1.1.7 &eventCondition

If the &monitor field is true, this field shall identify an Event Condition object with the following field values:

a) the &name field shall be equal to the Program Invocation object's &name field;

b) the &ecClass field shall be equal to monitored;

c) the &ecState field shall be idle;

d) the &enabled field shall be true;

e) the &monitoredVariable field choice shall be unspecified (specifying that the Program Invocation is in
the running state);

f) the &EEnrollment field shall indicate the single defined Event Enrollment object whose definition follows;

g) the &accessControl field shall indicate an Access Control List object that will report the value of MMS
Deletable as true. The predefined symbol 'M_Deletable' may be used for this purpose.

h) the &priority field shall be normalPriority;

i) the &severity field shall be normalSeverity;

j) the &alarmSummaryReports field shall be false;

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved116

k) the &evaluationInterval field value shall be a local matter.

12.1.1.8 &eventAction

If the &monitor field is true, this field shall identify an Event Action object with the following field values:

a) the &name field shall be equal to the Program Invocation object's &name field value;

b) the &accessControl field shall indicate an Access Control List object that will report the value of MMS
Deletable as true. The predefined symbol 'M_Deletable' may be used for this purpose.

c) the &confirmedServiceRequest field shall indicate the GetProgramInvocationAttributes service;

d) the &modifier field shall be empty;

e) the &eventEnrollment field shall indicate the single defined Event Enrollment whose definition follows.

12.1.1.9 &eventEnrollment

If the &monitor field is true, this field shall identify an Event Enrollment object with the following field values:

a) the &name field shall be equal to the Program Invocation object's &name field value:

b) the &accessControl field shall indicate an Access Control List object that will report the value of MMS
Deletable as true. The predefined symbol 'M_Deletable' may be used for this purpose.

c) the &eeClass field value shall be notification;

d) the &eventCondition field shall indicate the Event Condition object described above;

e) the &ECTransitions field shall contain the sole element active-to-idle;

f) the &aAssociation field value shall specify the association over which the Program Invocation was created;

g) the ¬ificationLost field shall be false;

h) the &eventAction shall indicate the Event Action described above;

i) the &duration field shall be determined by the corresponding parameter of the CreateProgramInvocation
service;

j) the &clientApplication field shall specify the client application that invoked the CreateProgramInvocation
service;

k) the &aaRule field value shall be none;

l) the &programInvocationState field value shall be idle.

12.1.1.10 &executionArgument

This field contains a character string or an externally coded parameter appropriate to the execution of this Program
Invocation. It may be set by either the Start service or by the Resume service. It shall initially be set to a empty
string when the Program Invocation is created. Subsequent execution of the Program Invocation may change the
value of this field.

12.1.1.11 &errorCode

This field, of type integer, shall identify the last recorded error of the Program Invocation execution. This field is
present only if the csr parameter CBB has been negotiated. A value of zero indicates that no error has been
recorded. The meaning of other values is a local matter, as is the method of resetting this field.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 117

12.1.1.12 &control

This field indicates whether (controlling) this Program Invocation is intended to be coupled to another
Program Invocation as being in control, or whether (controlled) this Program Invocation, after coupling,
normally receives control information from another Program Invocation (the Controlling Program Invocation). If
neither case applies, this field shall have the value normal. This field is present only if the csr parameter CBB
has been negotiated.

When two Program Invocations are coupled in this manner, the service indications for the Start and Resume
service requests received by a Controlling Program Invocation can cause state transitions in the Controlled
Program Invocations that are coupled to the Controlling Program Invocation (see 12.4 and 12.6). The result
reported by a Controlling Program Invocation can contain information that reflects the effect of the service request
on the Controlled Program Invocations.

The intent is to associate the execution of a task program that directs the activity of a complex piece of equipment
(such as a robot) with a Controlling Program Invocation, and the operation of the hardware control programs of
the physical devices with Controlled Program Invocations. This allows logical asynchrony in operation between
the two classes of Program Invocations, a necessary feature of the operation of such equipment. In particular,
there are now three ways to stop this equipment, by stopping the control program of the equipment itself, by
stopping the task program that has the indirect effect of stopping the equipment when no movement commands are
generated, and by stopping the entire system (see 12.5).

 Control-State ::= INTEGER {
normal (0),
controlling (1),
controlled (2) } (0..2)

12.1.1.13 &controlling-Program-Invocation

This field is present only if the csr parameter CBB has been negotiated and if the value of the &control field is
controlled. If present, it references the Program Invocation that acts as the Controlling Program Invocation
for this Program Invocation. The referenced Program Invocation shall have its &control field equal to
controlling, and shall have this Program Invocation included in its &controlled-Program-Invocation field.

12.1.1.14 &Controlled-Program-Invocations

This field is present only if the csr parameter CBB has been negotiated and if the Program Invocation has its
&control field equal to controlling. It is a set of Program Invocations that have their &control field equal to
controlled, and that have their &controlling-Program-Invocation field indicating the present Program
Invocation. This set may be empty.

12.1.1.15 &program-Location

This field, of type character string, is present only if the csr parameter CBB has been negotiated and if the
Program Invocation has its &control field equal to controlling. The use of this field shall be an
implementation option, and if used, the format of the &program-Location field shall be described in the CIS (see
clause 25 of ISO 9506-2). If present, it identifies the line of source code for the Program Invocation that is
currently being executed or will be executed when the Program Invocation is placed in the running state.

12.1.1.16 &running-Mode

This field is present only if the csr parameter CBB has been negotiated and if the Program Invocation has its
&control field equal to controlling. If present, it indicates how the Program Invocation execution is
governed. If the value of this field is free-run, the Program Invocation will stay in the running state until
some local or remote event occurs that causes it to cease execution. If value of this field is cycle-limited, an
explicit counter is maintained containing the number of cycles to be executed. When this counter reaches zero, the
Program Invocation ceases execution and returns to the idle state. This field may take the value step-
limited for implementations that support this mode. In that case, the number of steps to be executed shall be
specified when the Program Invocation is started or resumed. When the number of steps has been decremented to
zero, the Controlling Program Invocation shall automatically move to the stopped state. This mode is normally
only used for debugging purposes. It shall be indicated in the CSI (see clause 25 of ISO 9506-2) whether the
implementation supports the step-limited value of &runningMode.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved118

 Running-Mode ::= INTEGER {
free-run (0),
cycle-limited (1),
step-limited (2) } (0..2)

12.1.1.17 &remaining-Cycle-Count

This field, of type integer, is present only if the csr parameter CBB has been negotiated, the value of the
&control field is controlling, and the value of the &running-Mode field is cycle-limited. If present this
field is the number of cycles of the Program Invocation remaining to be executed.

12.1.1.18 &remaining-Step-Count

This field, of type integer, is present only if the csr parameter CBB has been negotiated, the value of the
&control field is controlling, and the value of the &running-Mode field is step-limited. If present this
field is the number of steps remaining to be executed when in Step-Limited Running Mode.

12.1.2 Program Invocation State Diagram

Figure 12 provides the state diagram for Program Invocations.

NOTE In Figure 12, some intermediate states (states that exist only between an indication primitive and a response
primitive) may be reported as proper states of the Program Invocation. This is because, in general, the transition may
take an appreciable time. The states named "Pn" are not reported in the GetProgramInvocationAttributes service
since the CreateProgramInvocation and the DeleteProgramInvocation services are defined as atomic
(non-interruptible) and therefore appear to be instantaneous to the MMS client. In order to keep the diagram simple,
the intermediate states of the Kill service are not shown. These intermediate states are not reported since the Kill
service procedure is defined as atomic (non-interruptible), and therefore its effect appears to be instantaneous. The
effects of MMS service requests that do not change the state of the Program Invocation, such as
GetProgramInvocationAttributes, are not shown on the diagram. The terms destructive and non-destructive are
explained in the service procedure for the Cancel service (see 8.5) and in the respective service procedures described
in this clause.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 119

Non-Existent

P 1 P 2 P 3

P 4

UnRunnable

Idle
Deselected

Selecting Deselecting

Idle

Idle
Selected

Starting

Running

Stopping Resuming Resetting

Stopped

26

22 24 26

26

25 27

23 25 27

15

17

101 102

103 104 105

106

1 3

15,4

15,
18,
20

14,15

8,155 7

6

10

9 1121

12,15

15 16 19

27

25

6

Figure 12 - Program Invocation State Diagram

Transition lines for the model are:

 1 - Start.indication
 2 - Start.response(+)
 3 - Start.response(-) non-destructive
 4 - Start.response(-) destructive
 5 - Stop.indication

 6 - Stop.response(+)
 7 - Stop.response(-) non-destructive
 8 - Stop.response(-) destructive
 9 - Resume.indication
10 - Resume.response(+)

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved120

11 - Resume.response(-) non-destructive
12 - Resume.response(-) destructive
13 - (end of program) Reusable = true
14 - (end of program) Reusable = false
15 - Kill.response(+)
16 - Reset.indication
17 - Reset.response(+) Reusable = true
18 - Reset.response(+) Reusable = false
19 - Reset.response(-) non-destructive

20 - Reset.response(-) destructive
21 - (program stop)
22 - CreateProgramInvocation.indication
23 - CreateProgramInvocation.response(+)
24 - CreateProgramInvocation.response(-)
25 - DeleteProgramInvocation.indication
26 - DeleteProgramInvocation.response(+)
27 - DeleteProgramInvocation.response(-)

If csr is supported, the following transitions are also recognized:

101 Select.indication
102 Select.response(+)
103 Select.response(-)

104 Select.indication, Controlling Program Invocation is
absent
105 Select.response(-)
106 Select.response(+)

If csr is not supported, the four states Idle Deselected, Selecting, Deselecting, and Idle Selected together constitute the single state Idle as
indicated by the dotted box.

NOTE The transition Kill.indication is not included in this diagram because the action of the Kill service is atomic; there is
no difference in the state of the Program Invocation between the indication and the response(+). The Kill.response(-)
is not included because it does not cause a state transition.

12.2 CreateProgramInvocation service

The CreateProgramInvocation service is used by an MMS client to assemble Domains into a specified Program
Invocation at the VMD. The MMS client specifies a list of Domains that are to be included in the Program
Invocation. Note that a given Domain may be in the &Domains field of more than one Program Invocation
simultaneously if it is sharable.

12.2.1 Structure

The structure of the component service primitive is show in Table 43.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Program Invocation Name
 List of Domain Names
 Reusable
 Monitor
 Monitor Type
 Control

Result(+)

Result(-)
 Error Type

M
M
M
M
U
C
C

M(=)
M(=)
M(=)
M(=)
U(=)
C(=)
C(=)

S

S
M

S(=)

S(=)
M(=)

csr

Table 43 - CreateProgramInvocation service

12.2.1.1 Argument

This parameter shall contain the parameters of the CreateProgramInvocation service request.

12.2.1.1.1 Program Invocation Name

This parameter, of type Identifier, shall be the &name field of this Program Invocation. This name shall be unique
among the names of all the Program Invocations in the VMD.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 121

12.2.1.1.2 List Of Domain Names

This parameter, of type list of Identifier, shall specify the existing Domains by name that are to be incorporated as
part of this Program Invocation. There shall be at least one such element in this list. The order of the list may be
significant to the MMS server in the process of creating the Program Invocation.

12.2.1.1.3 Reusable

This parameter, of type boolean, shall indicate whether (true) the Program Invocation will enter the idle state
after completion or (false) the unrunnable state.

12.2.1.1.4 Monitor

This parameter, of type boolean, shall indicate, if present, that the MMS client wants to be informed about the
progress of the Program Invocation as it is executed.

12.2.1.1.5 Monitor Type

This parameter, of type boolean, shall be present if and only if the value of the Monitor parameter is true. This
parameter shall indicate, if true, that the notification is permanent, hence the notification exists for the life of the
Program Invocation. If the value is false, the notification is current, and exists only as long as the association is
maintained. The value of this parameter shall become the value of the &duration field of the Event Enrollment
that is implicitly created as a result of this service request.

12.2.1.1.6 Control

This parameter shall indicate the value of the Control attribute of the Program Invocation. This parameter may
have the value controlling, controlled, or normal. This parameter shall be present only if the csr
parameter CBB has been negotiated.

12.2.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

12.2.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

12.2.2 Service Procedure

12.2.2.1 Preconditions

The MMS server shall verify that:

a) no Program Invocation of the same name as the Program Invocation Name parameter already exists;

b) all Domains of the List of Domain Names parameter exist;

c) each Domain is available for incorporation into this Program Invocation (that each Domain is either in the
ready or d7 state, or is in the in-use, d4, d5, or d6 state with &sharable field equal to true);

d) any conditions specified for Service Class = LOAD are satisfied in the Access Control List object
referenced by the &accessControl field of the VMD;

e) there does not exist an Event Condition, Event Action, or Event Enrollment with the same name of VMD
scope as the Program Invocation.

If any of these conditions is not met, a Result(-) shall be returned.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved122

12.2.2.2 Actions

The MMS server shall perform the following series of actions:

12.2.2.2.1 Action Step 1

Create a Program Invocation object initialized as follows:

a) set its &name field equal to the Program Invocation Name parameter;

b) set its &programInvocationState field equal to idle;

c) set its &accessControl field to reference an Access Control List object that will report the value of MMS
Deletable as true (see 9.1.4). The predefined symbol 'M_Deletable' (see 25.3.2.1) may be used for this
purpose.

d) set the &reusable field equal to the Reusable parameter;

e) set the &monitor field equal to true if the Monitor parameter is specified; otherwise false;

f) set the &executionArgument field equal to a string of length zero.

12.2.2.2.2 Action Step 2

For each Domain in the List of Domain Names parameter, perform the following steps:

a) if the Domain &state field is equal to d4, d5, or d6, wait until the Domain enters the in-use state;

b) if the Domain &state field is equal to d7, wait until the Domain enters the ready state;

c) change the Domain &state field to in-use;

d) add a reference to this Domain to the Program Invocation's &Domains field.

e) add a reference to this Program Invocation to the Domain's &ProgramInvocations field.

12.2.2.2.3 Action Step 3

If the Monitor parameter is specified, enable the Program Invocation to report whenever it ceases running. To do
this, make use of Event Management facilities described in clause 18. The following actions shall occur that will
cause the Program Invocation to issue a EventNotification request primitive that carries a
GetProgramInvocationAttribute response whenever the Program Invocation leaves the running state (see
12.1.2).

The MMS server shall:

a) create an Event Condition with attributes as described in 12.1.1.7;

b) create an Event Action object with attributes as described in 12.1.1.8;

c) create an Event Enrollment object with attributes as described in 12.1.1.9.

NOTE This is equivalent to transitions of the Program Invocation out of the running state, i.e. whenever it completes or
is stopped (locally or via MMS services), or is killed if it was in the running state.

12.2.2.2.4 Action Step 4

If the Control parameter is present in the service request and has the value CONTROLLING, the &control field
shall be set to controlling, the &controlled-Program-Invocations field shall be set to an empty list. The
&program-Location field shall be set to an empty string and the &running-Mode field shall be set to free-run.

If the Control parameter is present in the service request and has the value CONTROLLED, the &control field
shall be set to controlled and the &controlling-Program-Invocation shall be set to null.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 123

If the Control parameter is present in the service request and has the value NORMAL, the &control field shall be
set to normal.

12.2.2.3 Conclusion

The MMS server shall guarantee that this service procedure is atomic, (not interruptible by another MMS service
indication specifying this Program Invocation or its constitutive elements).

If any step in this process fails, the service shall fail, all partially completed steps shall be undone, and a Result(-)
response shall be returned. Otherwise, the service shall succeed, the Program Invocation shall be left in idle
state, and a Result(+) shall be returned.

12.3 DeleteProgramInvocation service

The DeleteProgramInvocation service is used by an MMS client to cause the deletion of a Program Invocation at
the MMS server.

12.3.1 Structure

The structure of the component service primitives is shown in Table 44.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Program Invocation Name

Result(+)

Result(-)
 Error Type

M
M

M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 44 - DeleteProgramInvocation service

12.3.1.1 Argument

This parameter shall contain the parameter of the DeleteProgramInvocation service request.

12.3.1.1.1 Program Invocation Name

This parameter, of type Identifier, shall be the name of the Program Invocation that is to be deleted.

12.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

12.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

12.3.2 Service Procedure

12.3.2.1 Preconditions

The MMS server shall:

a) verify that specified Program Invocation exists;

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved124

b) verify that all the conditions in the Access Control List referenced by the &accessControl field of the VMD
are satisfied for the service class DELETE (see 9.1.3);

c) verify that all the conditions in the Access Control List referenced by the &accessControl field of the
Program Invocation are satisfied for the service class DELETE (see 9.1.3);

d) verify that the Program Invocation is in the idle, stopped or unrunnable state;

e) If the &control field of the Program Invocation to be deleted has the value controlled, and the value of
the &controlling-Program-Invocation field indicates some Program Invocation, verify that the Program
Invocation referenced by the &controlling-Program-Invocation field is in the idle state.

If these conditions are not met a Result(-) response shall be returned.

12.3.2.2 Actions

The MMS server shall remove references to this Program Invocation from the &ProgramInvocations field of each
Domain referenced by the &Domains field of the Program Invocation. If the subject Domain has no other
references to Program Invocations, it shall be moved from the in-use state to the ready state.

If the value of the &monitor field of the Program Invocation object is true, the associated Event Enrollment, Event
Action, and Event Condition shall be deleted according to the procedures described in the DeleteEventEnrollment,
DeleteEventAction and DeleteEventCondition service procedures, except that any constraints expressed by the
Access Control List objects referenced by these objects shall be ignored.

The MMS server shall remove the reference to this Program Invocation of the Access Control List referenced by
the &accessControl field of this Program Invocation.

If the &control field of the Program Invocation to be deleted has the value controlled, and the value of the
&controlling-Program-Invocation field indicates some Program Invocation, alter the &Controlled-Program-
Invocations field of the Program Invocation referenced by the &controlling-Program-Invocation field by removing
the reference to the Program Invocation about to be deleted.

If the &control field of the Program Invocation to be deleted has the value controlling, for each Program
Invocation that appears in the &Controlled-Program-Invocations field, perform the following operations:

a) change the value of the &control field of this Program Invocation from controlled to normal;

b) remove the reference to the Program Invocation to be deleted from the &controlling-Program-Invocation
field of this Program Invocation.

The Program Invocation object shall be deleted.

If any step of this process fails, the service shall fail, all partially completed steps shall be undone, and a Result(-)
response shall be returned. Otherwise, a Result(+) shall be returned.

12.4 Start service

The Start service is used by an MMS client to change the state of a Program Invocation to the running state.
The Program Invocation shall be in the idle state for this service to be successfully completed.

12.4.1 Structure

The structure of the component service primitives is shown in Table 45.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 125

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Program Invocation Name
 Execution Argument
 Start Location
 Running Mode
 No Limit
 Cycle Count
 Step Count

Result(+)

Result(-)
 Error Type
 Program Invocation State

M
M
U
U
C
S
S
S

M(=)
M(=)
U(=)
U(=)
C(=)
S(=)
S(=)
S(=)

S

S
M
M

S(=)

S(=)
M(=)
M(=)

csr
csr

Table 45 - Start service

12.4.1.1 Argument

This parameter shall contain the parameters of the Start service request.

12.4.1.1.1 Program Invocation Name

This parameter, of type Identifier, shall specify the Program Invocation that is to be started.

12.4.1.1.2 Execution Argument

This parameter shall be an optional field that may be used to pass data to the started Program Invocation. This
parameter shall be either a character string or an externally coded value.

12.4.1.1.3 Start Location

This optional parameter, of type character string, shall be present only if the Program Invocation has its &control
field value equal to controlling. If the &control field value is equal to controlling, the use of this
parameter shall be a user option. If this parameter is implemented, its format shall be (See clause 25 of ISO 9506-
2) the same as the &programLocation field of the Program Invocation. The value of this parameter shall indicate
the starting location within the Program Invocation at which to begin execution. If the Start Location parameter is
omitted from the service request, execution shall begin at the first step of the program. The meaning of the first
program step or a default first step is a local matter.

12.4.1.1.4 Running Mode

This parameter shall be present only if the &control field value of the Program Invocation is equal to
controlling. The value of this parameter shall indicate the value for the &runningMode field of the Program
Invocation. Depending on which value of &runningMode field of the Program Invocation object is selected, one
of the following parameters shall be present.

12.4.1.1.4.1 No Limit

This parameter, of type null, shall be chosen if the value of the &running-Mode field is to be set to free-run.

12.4.1.1.4.2 Cycle Count

This parameter, of type integer, shall be chosen if the value of the &running-Mode field is to be set to
cycle-limited and the value of the &remaining-Cycle-Count field shall be set to this parameter value. The
value of this parameter shall be greater than zero.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved126

12.4.1.1.4.3 Step Count

This parameter, of type integer, shall be chosen if the value of the &running-Mode field is to be set to
step-limited and the value of the &remaining-Step-Count field shall be set to this parameter value. The
value of this parameter shall be greater than zero. Implementation of the step-limited &runningMode shall
be defined in the CIS (see clause 25 of ISO 9506-2).

12.4.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

12.4.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, shall provide the reason for failure. When failure is indicated, the following parameter shall
be returned.

12.4.1.3.1 Program Invocation State

Following an unsuccessful Start service, the Program Invocation shall be returned to its previous state if possible,
or it shall be placed in the unrunnable state. This parameter shall identify the state of the Program Invocation
following an unsuccessful Start.

12.4.2 Service Procedure

12.4.2.1 Preconditions

The MMS server shall:

a) verify that specified Program Invocation exists;

b) verify that all the conditions in the Access Control List specified by the &accessControl field of the VMD
are satisfied for the service class EXECUTE (see 9.1.3);

c) verify that all the conditions in the Access Control List specified by the &accessControl field of the
Program Invocation are satisfied for the service class EXECUTE (see 9.1.3);

d) verify that the Program Invocation is in the idle state;

e) if the &control field of the Program Invocation identified by the Program Invocation Name parameter of
the Start service request does not have the value controlling, verify that the Start Location and
Running Mode parameters are not present;

f) if the Program Invocation identified by the Program Invocation Name parameter of the Start service
request has its &control field equal to controlling, verify that the Program Invocation is referenced by
the &selected-Program-Invocation field of the VMD.

If any of these conditions is not met, a Result(-) shall be returned.

12.4.2.2 Actions

12.4.2.2.1 Action Step 1

If the Execution Argument parameter is present in the service indication, the &executionArgument field of the
Program Invocation object shall have its value set to the value of the Execution Argument parameter; otherwise
the value of the &executionArgument field shall remain unchanged.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 127

12.4.2.2.2 Action Step 2

If the csr parameter CBB is supported and the &control field of the Program Invocation is equal to
controlling, the following steps shall be performed for each element of the &Controlled-Program-Invocations
field of this Program Invocation:

a) verify that the referenced Program Invocation has its &control field equal to controlled and that its
&controlling-Program-Invocation field references this Program Invocation;

b) if the referenced Program Invocation is in the idle state, perform a Start procedure for this Program
Invocation and move it into the running state;

c) if the referenced Program Invocation is in the stopped state, perform a Resume procedure for this
Program Invocation and move it into the running state;

d) if the referenced Program Invocation cannot be placed in the running state, for every previous
referenced Program Invocation of the list, perform a Stop procedure. If any such Stop procedure fails, it is
a local matter how to treat this situation. A VMDStop procedure may be the appropriate action. Finally,
return a Result(-) for this service request and skip the remainder of this procedure.

12.4.2.2.3 Action Step 3

If the Program Invocation identified by the Program Invocation Name parameter of the Start service request has its
&control field equal to controlling, the attributes of the Program Invocation shall be set as follows:

a) if the No Limit parameter is selected in the service request, the &running-Mode field of the Program
Invocation shall be set to free-run;

b) if the Cycle Count parameter is selected in the service request, the &running-Mode field of the Program
Invocation shall be set to cycle-limited and the &remaining-Cycle-Count field of the Program
Invocation shall be set to the value of the Cycle Count parameter;

c) if the Step Count parameter is selected in the service request, the &running-Mode field of the Program
Invocation shall be set to step-limited and the &remaining-Step-Count field of the Program
Invocation shall be set to the value of the Step Count parameter;

d) if the Start Location parameter is present in the service request, the value of this parameter shall condition
the program control information of the Program Invocation in order to provide a starting point for the
execution of the Program Invocation. The representation used to convey the starting location is a local
matter, and in general will depend on the programming language used. The format used for the Start
Location parameter shall be described in the CSI (see clause 25 of ISO 9506-2);

e) if the Start Location parameter is absent from the service request, the default value of the starting location
shall be used in the execution of the Program Invocation.

12.4.2.2.4 Action Step 4

The Program Invocation shall be placed in the starting state. Placing a Program Invocation in the starting
state means initiating a procedure that will carry the Program Invocation to the running state after some time
interval (which may be negligible). A Result(+) primitive shall be issued as soon as the Program Invocation is
placed in the running state. A Result(-) response primitive shall be issued if the starting process fails, and the
Program Invocation shall be returned either to the idle state if possible or to the unrunnable state. The
Program Invocation State parameter shall be returned with the Result(-) response to indicate the state of the
Program Invocation.

Since, in general, starting a Program Invocation may take a considerable time, this operation shall be considered
cancelable, even if the cancel cannot be done non-destructively. If the service is cancelled, a Result(-) response to
the service request shall be returned indicating the resulting state of the Program Invocation, and the cancel service
shall issue a Result(+) response.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved128

12.5 Stop service

The Stop service is used by an MMS client to request an MMS server to transition a named Program Invocation
from the running state to the stopped state.

12.5.1 Structure

The structure of the component service primitives is shown in Table 46.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Program Invocation Name

Result(+)

Result(-)
 Error Type
 Program Invocation State

M
M

M(=)
M(=)

S

S
M
M

S(=)

S(=)
M(=)
M(=)

Table 46 - Stop service

12.5.1.1 Argument

This parameter shall contain the parameters of the Stop service request.

12.5.1.1.1 Program Invocation Name

This parameter, of type Identifier, shall specify the Program Invocation that is to be stopped.

12.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

12.5.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, shall provide the reason for failure. When failure is indicated, the following parameter shall
be returned.

12.5.1.3.1 Program Invocation State

This parameter, of type ProgramInvocationState, shall identify the final state of the Program Invocation if the Stop
service fails.

12.5.2 Service Procedure

12.5.2.1 Preconditions

The MMS server shall verify that:

a) the specified Program Invocation exists;

b) all the conditions in the Access Control List specified by the &accessControl field of the VMD are
satisfied for the service class EXECUTE (see 9.1.3);

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 129

c) all the conditions in the Access Control List specified by the &accessControl field of the Program
Invocation are satisfied for the service class EXECUTE (see 9.1.3);

d) the Program Invocation is in the running state;

If any of these conditions is not met, a Result(-) shall be returned.

12.5.2.2 Actions

The Program Invocation shall be placed in the stopping state. Placing a Program Invocation in the stopping
state means initiating a procedure that will carry the Program Invocation to the stopped state after some time
interval (which may be negligible). A Result(+) primitive shall be issued as soon as the Program Invocation is
placed in the stopped state. A Result(-) response primitive shall be issued if the stopping process fails, and the
Program Invocation shall be returned either to the running state if possible or to the unrunnable state. The
Program Invocation State parameter shall be returned with the Result(-) response to indicate the state of the
Program Invocation.

Since, in general, stopping a Program Invocation may take a considerable time, this operation shall be considered
cancelable, even if the cancel cannot be done non-destructively. If the service is cancelled, a Result(-) response to
the service request shall be returned indicating the resulting state of the Program Invocation, and the cancel service
shall issue a Result(+) response.

NOTE If the Program Invocation is implemented through a sequential procedural programming language, this service should
cause the current program step to be saved as part of the control information of the Program Invocation for a
subsequent resumption procedure.

12.6 Resume service

The Resume service is used by an MMS client to request an MMS server to change the state of a Program
Invocation to the running state.

12.6.1 Structure

The structure of the component service primitives is shown in Table 47.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Program Invocation Name
 Execution Argument
 Resume Type
 Continue Mode
 Change Mode
 No Limit
 Cycle Count
 Step Count

Result(+)

Result(-)
 Error Type
 Program Invocation State

M
M
U
C
S
S
S
S
S

M(=)
M(=)
U(=)
C(=)
S(=)
S(=)
S(=)
S(=)
S(=)

S

S
M
M

S(=)

S(=)
M(=)
M(=)

csr

Table 47 - Resume service

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved130

12.6.1.1 Argument

This parameter shall contain the parameters of the Resume service request.

12.6.1.1.1 Program Invocation Name

This parameter, of type Identifier, shall specify the Program Invocation that is to be resumed.

12.6.1.1.2 Execution Argument

This parameter is an optional field which shall be used to pass data to the resuming Program Invocation. This
parameter is either a character string or an externally coded value.

12.6.1.1.3 Resume Type

This parameter shall be present if the csr parameter CBB has been negotiated and if the &control field of the
Program Invocation is equal to controlling. If present, one of the following choices shall be selected.

12.6.1.1.3.1 Continue Mode

This parameter indicates that the Program Invocation is to resume execution with the &running-Mode field
unchanged.

12.6.1.1.3.2 Change Mode

This parameter indicates that the Program Invocation is to resume execution with the &running-Mode field
changed to a new value. If this parameter is selected, one of the following parameters shall be present.

12.6.1.1.3.2.1 No Limit

This parameter, of type null, shall be chosen if the value of the &running-Mode field is to be changed to
free-run.

12.6.1.1.3.2.2 Cycle Count

This parameter, of type integer, shall be chosen if the value of the &running-Mode field is to be changed to
cycle-limited, and the value of the &remaining-Cycle-Count field shall be set to this parameter value. The
value of this parameter shall be greater than zero.

12.6.1.1.3.2.3 Step Count

This parameter, of type integer, shall be chosen if the value of the &running-Mode field is to be changed to
step-limited, and the value of the &remaining-Step-Count field shall be set to this parameter value. The
value of this parameter shall be greater than zero. Implementation of the step-limited &running-Mode shall
be defined in the CSI (see clause 25 of ISO 9506-2). If not supported, this choice may not be selected.

12.6.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

12.6.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, shall provide the reason for failure. When failure is indicated, the following parameter shall
be returned.

12.6.1.3.1 Program Invocation State

This parameter shall be of type ProgramInvocationState. Following an unsuccessful Resume service, the Program
Invocation shall be returned to its previous state if possible, or it shall be placed in the unrunnable state. This
parameter shall identify the state of the Program Invocation following an unsuccessful Resume.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 131

12.6.2 Service Procedure

12.6.2.1 Preconditions

The MMS server shall:

a) verify that specified Program Invocation exists;

b) verify that all the conditions in the Access Control List specified by the &accessControl field of the VMD
are satisfied for the service class EXECUTE (see 9.1.3);

c) verify that all the conditions in the Access Control List specified by the &accessControl field of the
Program Invocation are satisfied for the service class EXECUTE (see 9.1.3);

d) verify that the Program Invocation is in the stopped state;

e) if the &control field of the Program Invocation does not have the value controlling, verify that neither
the Continue Mode nor the Change Mode parameters are present;

f) if Continue Mode is selected, the MMS server shall:

1) If the value of the &running-Mode field of the Program Invocation is cycle-limited, verify
that the value of the &remaining-Cycle-Count field is greater than zero.

2) If the value of the &running-Mode field is step-limited, verify that the value of the
&remaining-Step-Count field is greater than zero.

3) If the Program Invocation identified by the Program Invocation Name parameter of the Resume
service request has its &control field equal to controlling, for each element on the
&Controlled-Program-Invocations field of this Program Invocation verify that the referenced
Program Invocation has its &control field value equal to controlled and that its &controlling-
Program-Invocation field references this Program Invocation.

If any of these conditions is not met, a Result(-) shall be returned.

12.6.2.2 Actions

a) If the Execution Argument parameter is present, the value of the &executionArgument field of the Program
Invocation shall assume the value of the Execution Argument parameter. Otherwise, the value of the
&executionArgument field shall remain unchanged.

b) If the Program Invocation identified by the Program Invocation Name parameter of the Resume service
request has its &control field equal to controlling, the following steps shall be performed for each
element on the &Controlled-Program-Invocations field of this Program Invocation:

1) If the referenced Controlled Program Invocation is in the idle state, perform a Start procedure for
the referenced Controlled Program Invocation and move it into the running state.

3) If the referenced Controlled Program Invocation is in the stopped state, perform a Resume
procedure for the referenced Controlled Program Invocation and move it into the running state.

4) If the referenced Controlled Program Invocation cannot be placed in the running state, for every
previous Controlled Program Invocation of the list, perform a Stop procedure. If any such Stop
procedure fails, it is a local matter how to treat this situation. A VMDStop procedure may be the
appropriate action. Return a Result(-) for this service request and skip the remainder of this
procedure.

c) The Program Invocation shall be placed in the resuming state. Placing a Program Invocation in the
resuming state means initiating a procedure that will carry the Program Invocation to the running state
after some time interval (which may be negligible). A Result(+) primitive shall be issued as soon as the
Program Invocation is placed in the running state. A Result(-) response primitive shall be issued if the
resuming process fails, and the Program Invocation shall be returned either to the stopped state if

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved132

possible, or to the unrunnable state. The Program Invocation State parameter shall be returned with the
Result(-) response to indicate the state of the Program Invocation.

Since, in general, resuming a Program Invocation may take a considerable time, this operation shall be considered
cancelable, even if the cancel cannot be done non-destructively. If the service is cancelled, a Result(-) response to
the service request shall be returned indicating the resulting state of the Program Invocation, and the cancel service
shall issue a Result(+) response.

NOTE If the Program Invocation is implemented through a sequential procedural programming language, this service should
cause execution of the Program Invocation to continue at the program step indicated in the control information.

12.7 Reset service

The Reset service is used by an MMS client to request an MMS server to transition a named Program Invocation
from the stopped state to the idle state or to the unrunnable state, according to the value of the &reusable
field of the Program Invocation object.

12.7.1 Structure

The structure of the component service primitives is shown in Table 48.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Program Invocation Name

Result(+)

Result(-)
 Error Type
 Program Invocation State

M
M

M(=)
M(=)

S

S
M
M

S(=)

S(=)
M(=)
M(=)

Table 48 - Reset service

12.7.1.1 Argument

This parameter shall contain the parameters of the Reset service request.

12.7.1.1.1 Program Invocation Name

This parameter, of type Identifier, shall specify the Program Invocation that is to be reset.

12.7.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

12.7.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, shall provide the reason for failure. When failure is indicated, the following parameter shall
be returned.

12.7.1.3.1 Program Invocation State

This parameter, of type ProgramInvocationState, shall identify the final state of the Program Invocation if the
Reset service fails.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 133

12.7.2 Service Procedure

12.7.2.1 Preconditions

The MMS server shall verify that:

a) the specified Program Invocation exists;

b) all the conditions in the Access Control List specified by the &accessControl field of the VMD are
satisfied for the service class EXECUTE (see 9.1.3);

c) all the conditions in the Access Control List specified by the &accessControl field of the Program
Invocation are satisfied for the service class EXECUTE (see 9.1.3);

d) the Program Invocation is in the stopped state.

If any of these conditions is not met, a Result(-) shall be returned.

12.7.2.2 Actions

The Program Invocation shall be placed in the resetting state. Placing a Program Invocation in the
resetting state means initiating a procedure that will carry the Program Invocation to another state after some
time interval (which may be negligible). If the value of the &reusable field is true, the next state shall be the
idle state; if the value of the &reusable field is false, the next state shall be unrunnable. A Result(+) shall be
issued as soon as the Program Invocation is placed in the idle state or the unrunnable state. A Result(-)
response primitive shall be issued if the resetting process fails, and the Program Invocation shall be returned to the
stopped state if possible, or to the unrunnable state. The Program Invocation State parameter shall be
returned with the Result(-) response to indicate the state of the Program Invocation.

Since, in general, resetting a Program Invocation may take a considerable time, this operation shall be considered
cancelable, even if the cancel cannot be done non-destructively. If the service is cancelled, a Result(-) response to
the service request shall be returned indicating the resulting state of the Program Invocation, and the cancel service
shall issue a Result(+) response.

NOTE If the Program Invocation is implemented through a sequential procedural programming language, this service should
cause the control information of the Program Invocation to be altered to reflect that the Program Invocation is again
at the "beginning of program".

12.8 Kill service

The Kill service is used by an MMS client to request an MMS server to place a Program Invocation in the
unrunnable state.

12.8.1 Structure

The structure of the component service primitives is shown in Table 49.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Program Invocation Name

Result(+)

Result(-)
 Error Type

M
M

M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 49 - Kill service

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved134

12.8.1.1 Argument

This parameter shall contain the parameter of the Kill service request.

12.8.1.1.1 Program Invocation Name

This parameter, of type Identifier, shall specify the Program Invocation that is to be killed.

12.8.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

12.8.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

12.8.2 Service Procedure

12.8.2.1 Preconditions

The MMS server shall:

a) verify that specified Program Invocation exists;

b) verify that all the conditions in the Access Control List specified by the &accessControl field of the VMD
are satisfied for the service class EXECUTE (see 9.1.3);

c) verify that all the conditions in the Access Control List specified by the &accessControl field of the
Program Invocation are satisfied for the service class EXECUTE (see 9.1.3);

If any of these conditions is not met, a Result(-) shall be returned.

12.8.2.2 Actions

The MMS server shall place the named Program Invocation in the unrunnable state. If the Kill service fails,
the state of the Program Invocation shall be left unchanged.

12.9 GetProgramInvocationAttributes service

The GetProgramInvocationAttributes service is used by an MMS client to request an MMS server to return the
attributes associated with the specified Program Invocation.

12.9.1 Structure

The structure of the component service primitives is shown in Table 50.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 135

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Program Invocation Name

Result(+)
 State
 List of Domain Names
 MMS Deletable
 Reusable
 Monitor
 Execution Argument
 Access Control List
 Error Code
 Control
 Controlling
 List of Program Invocations
 Program Location
 Running Mode
 Free Running
 Remaining Cycle Count
 Remaining Step Count
 Controlled
 Controlling Program Invocation
 Normal

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M
M
M
M
M
C
C
C
S
M
M
M
S
S
S
S
M
S

S
M

S(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
C(=)
C(=)
C(=)
S(=)
M(=)
M(=)
M(=)
S(=)
S(=)
S(=)
S(=)
M(=)
S(=)

S(=)
M(=)

aco
csr
csr

Table 50 - GetProgramInvocationAttributes service

12.9.1.1 Argument

This parameter shall contain the parameter of the GetProgramInvocationAttributes service request.

12.9.1.1.1 Program Invocation Name

This parameter, of type Identifier, shall be the name of the Program Invocation whose attributes are requested.

12.9.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

12.9.1.2.1 State

This parameter, of type ProgramInvocationState, shall be the value of the &programInvocationState field of the
Program Invocation.

12.9.1.2.2 List Of Domain Names

This parameter, of type list of Identifier, shall provide the names of the Domains that are referenced by the
&Domains field of the Program Invocation.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved136

12.9.1.2.3 MMS Deletable

Subclause 9.1.4 specifies the value to be returned by this parameter.

12.9.1.2.4 Reusable

This parameter, of type boolean, shall be the value of the &reusable field of the Program Invocation.

12.9.1.2.5 Monitor

This parameter, of type boolean, shall be the value of the &monitor field of the Program Inovcation. If this
parameter is true, the attributes of the related Event Enrollment object may be obtained using the
GetEventEnrollmentAttributes service (see 21.4).

12.9.1.2.6 Execution Argument

This parameter shall contain the value of the &executionArgument field of the Program Invocation. This
parameter shall be either a character string or an externally coded value.

12.9.1.2.7 Access Control List

This parameter, of type Identifier, shall be the name of the Access Control List object specified by the
&accessControl field of the Program Invocation. This parameter shall not appear unless the aco parameter CBB
has been negotiated.

12.9.1.2.8 Error Code

This parameter, of type integer, shall contain the value of the &errorCode field of the Program Invocation. This
parameter shall not appear unless the csr parameter CBB has been negotiated.

12.9.1.2.9 Control

This parameter shall contain the &control field of the Program Invocation. This parameter shall not appear unless
the csr parameter CBB has been negotiated. The &control field may have the value controlling,
controlled, or normal. Depending on the value of this field, one of the following parameters shall be
present.

12.9.1.2.10 Controlling

This parameter value shall be selected if the value of the &control field of the Program Invocation is
controlling. If this parameter is selected, the following additional parameters shall appear.

12.9.1.2.11 List of Program Invocations

This parameter shall indicate the names of the Program Invocations in the &Controlled-Program-Invocations field
of this Program Invocation. This list may have zero or more elements.

12.9.1.2.12 Program Location

This parameter, of type character string, shall indicate, if present, the value of the &program-Location field if the
Program Invocation is related to a sequential programming language. For those Program Invocations that are not
related to a sequential programming language, this parameter shall be absent. Use of this parameter shall be
described in the CSI (see clause 25 of ISO 9506-2).

12.9.1.2.13 Running Mode

This parameter shall indicate the value of the &running-Mode field of the Program Invocation. Depending on the
value of &running-Mode, one of the following parameters shall be present.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 137

12.9.1.2.14 Free Running

Selection of this null parameter shall identify the &running-Mode as free-run.

12.9.1.2.15 Remaining Cycle Count

Selection of this parameter shall identify the &running-Mode as cycle-limited. Further, the value of the
parameter shall be the value of the &remaining-Cycle-Count field of the Program Invocation.

12.9.1.2.16 Remaining Step Count

Selection of this parameter shall identify the &running-Mode as step-limited. Further, the value of the
parameter shall be the value of the &remaining-Step-Count field of the Program Invocation. Implementation of
the step-limited Running Mode shall be defined in the CSI (see clause 25 of ISO 9506-2). If not supported, this
choice may not be selected.

12.9.1.2.17 Controlled

This parameter value shall be selected if the value of the &control field of the Program Invocation is
controlled. If this parameter is selected, the following additional parameter shall appear.

12.9.1.2.18 Controlling Program Invocation

This parameter shall indicate the Program Invocation that is referenced by the value of the &controlling-Program-
Invocation field of the Program Invocation. If no such Program Invocation is referenced, this parameter shall have
a null value.

12.9.1.2.19 Normal

This parameter value shall be selected if the value of the &control field of the Program Invocation is normal. If
this parameter is selected, there are no additional parameters.

12.9.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

12.9.2 Service Procedure

The MMS server shall verify that the specified Program Invocation exists. If the Program Invocation does not
exist a Result(-) response shall be returned. Otherwise the attributes of the named Program Invocation shall be
returned with a Result(+).

12.10 Select service

The Select service is used by an MMS client to request the MMS server to identify a Program Invocation as the
selected Program Invocation controlling the VMD.

12.10.1 Structure

The structure of the component service primitives is shown in Table 51.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved138

 Conformance: csr
 Parameter Name Req Ind Rep Cnf CBB

 Argument
 Controlling Program Invocation
 List of Program Invocations

 Result(+)

 Result(-)
 Error Type

M
U
C

M(=)
U(=)
C(=)

S

S
M

S(=)

S(=)
M(=)

Table 51 - Select service

12.10.1.1 Argument

This parameter contains the parameters of the Select service request.

12.10.1.1.1 Controlling Program Invocation

This parameter, of type Identifier, indicates the Program Invocation that is to be selected. The &control field of
this Program Invocation shall have a value equal to controlling. If this parameter is not present, it indicates
that the present Controlling Program Invocation is to be deselected, and no Program Invocation is to be selected.

12.10.1.1.2 List of Program Invocations

This parameter, of type list of identifier, indicates the Program Invocations that will be placed under the control of
the referenced Controlling Program Invocation. This parameter shall be present only if the Controlling Program
Invocation parameter is present.

12.10.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

12.10.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

12.10.2 Service procedure

12.10.2.1 Preconditions

The MMS server shall perform the following checks.

a) If the Controlling Program Invocation parameter is present, the Program Invocation indicated by the
Controlling Program Invocation parameter shall have its &control field equal to controlling.

b) If the Controlling Program Invocation parameter is present, the Program Invocation indicated by the
Controlling Program Invocation parameter shall be in the idle state.

c) For each element of the List of Program Invocations parameter, verify that the Program Invocation has its
&control field equal to controlled and that the value of the &controlling-Program-Invocation field is
null or equal to the &selected-Program-Invocation field of the VMD.

d) If the &selected-Program-Invocation field of the VMD is not null, verify that this Program Invocation is in
the idle state.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 139

e) Verify that the &Controlled-Program-Invocations field of the Program Invocation indicated by the
Controlling Program Invocation parameter is null.

If any of these conditions is not satisfied, return a Result(-) and skip the remainder of this procedure.

12.10.2.2 Actions

12.10.2.2.1 Action Step 1

If the &selected-Program-Invocation field of the VMD is not null, perform the following steps for the Program
Invocation referenced by this field.

a) For each Program Invocation on the &Controlled-Program-Invocations field of the Program Invocation
referenced by the Controlling Program Invocation, set the &control field of this Program Invocation to
normal.

b) Set the &Controlled-Program-Invocations field of the Program Invocation referenced by the &selected-
Program-Invocation field of the VMD to an empty list.

c) Set the &selected-Program-Invocation field of the VMD to null.

d) If the Controlling Program Invocation parameter is not present, return Result(+) and skip the remainder of
this procedure.

12.10.2.2.2 Action Step 2

a) Set the &selected-Program-Invocation field of the VMD to reference the Program Invocation indicated by
the Controlling Program Invocation parameter.

b) If the List of Program Invocations parameter is empty, set the &Controlled-Program-Invocations field of
the Program Invocation indicated by the Controlling Program Invocation to an empty list.

c) If the List of Program Invocations parameter is not empty, for each element of the list, set the
&controlling-Program-Invocation field of this Program Invocation to reference the Program Invocation
indicated by the Controlling Program Invocation parameter. Add this Program Invocation to the
&Controlled-Program-Invocations field of the Program Invocation indicated by the Controlling Program
Invocation parameter.

d) Return a Result(+).

12.11 AlterProgramInvocationAttributes service

The AlterProgramInvocationAttributes service is used by an MMS client to alter some attributes of a Program
Invocation at the MMS server.

12.11.1 Structure

The structure of the component service primitives is shown in Table 52.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved140

 Conformance: csr
 Parameter Name Req Ind Rsp Cnf CBB

Argument
 Controlling Program Invocation
 Running Mode
 No Limit
 Cycle Count
 Step Count

Result(+)

Result(-)
 Error Type

M
M
C
S
S
S

M(=)
M(=)
C(=)
S(=)
S(=)
S(=)

S

S
M

S(=)

S(=)
M(=)

Table 52 - AlterProgramInvocationAttributes service

12.11.1.1 Argument

This parameter shall contain the parameters of the AlterProgramInvocationAttributes service request.

12.11.1.1.1 Controlling Program Invocation

This parameter, of type Identifier, shall identify the Program Invocation whose attributes are to be altered.

12.11.1.1.2 Running Mode

This parameter shall indicate the value for the &running-Mode field of the Program Invocation object. Depending
on the selection of a value for the &running-Mode, one of the following parameters shall be present.

12.11.1.1.2.1 No Limit

This parameter shall be chosen if the value of the &running-Mode field is to be set to free-run.

12.11.1.1.2.2 Cycle Count

This parameter, of type integer, shall be chosen if the value of the &running-Mode field is to be set to cycle-
limited; the value of the &remaining-Cycle-Count field shall be set to this parameter value.

12.11.1.1.2.3 Step Count

This parameter, of type integer, shall be chosen if the value of the &running-Mode field is to be set to step-
limited; the value of the &remaining-Step-Count field shall be set to this parameter value. Implementation of
the step-limited value of the &running-Mode field shall be defined in the CSI (see clause 25 of ISO 9506-2).
If not supported, this choice may not be selected.

12.11.2 Service procedure

12.11.2.1 Preconditions

The MMS server shall verify that:

a) the Program Invocation identified by the Controlling Program Invocation parameter exists; and

b) the Program Invocation has its &control field equal to controlling.

If either condition is not satisfied, return a Result(-) and skip this procedure.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 141

12.11.2.2 Actions

The MMS server shall:

a) If the No Limit parameter is selected in the service request, the &running-Mode field of the Program
Invocation shall be set to free-run.

b) If the Cycle Count parameter is selected in the service request, the &running-Mode field of the Program
Invocation shall be set to cycle-limited and the &remaining-Cycle-Count field of the Program
Invocation shall be set to the value of the Cycle Count parameter.

c) If the Step Count parameter is selected in the service request, the &running-Mode field of the Program
Invocation shall be set to step-limited and the &remaining-Step-Count field of the Program
Invocation shall be set to the value of the Step Count parameter.

12.12 ReconfigureProgramInvocation service

The ReconfigureProgramInvocation service is used by an MMS client to add and/or remove Domains to/from a
Program Invocation.

12.12.1 Structure

The structure of the component service primitives is shown in Table 53.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Old Program Invocation Name
 New Program Invocation Name
 List of Domains to Add
 List of Domains to Remove

Result(+)

Result(-)
 Error Type

M
M
U
M
M

M(=)
M(=)
U(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 53 - ReconfigureProgramInvocation service

12.12.1.1 Argument

This parameter shall contain the parameters of the ReconfigureProgramInvocation service request.

12.12.1.1.1 Old Program Invocation Name

This parameter, of type Identifier, shall be the name of the Program Invocation that is to be reconfigured.

12.12.1.1.2 New Program Invocation Name

This optional parameter, of type Identifier, provides the possibility to rename the Program Invocation in the same
operation. If this name is already in use, a Result(-) response shall be returned.

12.12.1.1.3 List of Domains to Add

This parameter, of type list of Identifier, shall specify zero or more Domains that are to be added to the &Domains
field of the Program Invocation object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved142

12.12.1.1.4 List of Domains to Remove

This parameter, of type list of Identifier, shall specify zero or more Domains that are to be removed from the
&Domains field of the Program Invocation object.

12.12.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

12.12.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

12.12.2 Service Procedure

12.12.2.1 Preconditions

The MMS server shall

a) verify that the Program Invocation identified by the Old Program Invocation parameter exists;

b) verify that this Program Invocation is in running state;

c) if the New Program Invocation parameter is present, verify that no Program Invocation having a &name
field equal to the New Program Invocation parameter already exists.

d) verify the existence of all Domains of the List of Domains to Add list;

e) verify the existence of all Domains of the List of Domains to Remove list;

f) verify that each Domain on the List of Domains to Add parameter is available for incorporation into this
Program Invocation (that each Domain is either in the ready or d7 state, or is in the in-use, d4, d5, or
d6 state with &sharable field equal to true);

If any of these conditions is not satisfied, return a Result(-), and skip the remainder of this procedure.

12.12.2.2 Actions

The MMS server shall:

a) for each Domain on the List of Domains to Add parameter, perform the following steps:

1) if the &state field of the Domain is equal to d4, d5, or d6, wait until the Domain enters the in-
use state;

2) if the &state field of the Domain is equal to d7, wait until the Domain enters the ready state;

3) change the value of the &state field of the Domain to in-use;

4) add this Program Invocation to the &ProgramInvocations field of the Domain;

5) add this Domain to the &Domains field of the Program Invocation.

b) for each Domain on the List of Domains to Remove parameter, perform the following steps:

1) remove the Program Invocation from the &ProgramInvocations field of the Domain;

2) if the &ProgramInvocations field is empty, change the value of the &state field of the Domain to
ready;

3) remove the Domain from the &Domains field of the Program Invocation.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 143

c) If the New Program Invocation Name parameter is present, change the &name field of the Program
Invocation to this parameter.

d) Return a Result(+).

The MMS server shall guarantee that this service procedure is atomic, (not interruptible by another MMS service
indication specifying this Program Invocation or its constitutive elements).

13 Unit Control

13.1 Introduction and Models

This clause provides an object model for the following object:

UNIT-CONTROL

This clause specifies the following services:

InitiateUnitControlLoad
UnitControlLoadSegment
UnitControlUpload
StartUnitControl
StopUnitControl
CreateUnitControl

AddToUnitControl
RemoveFromUnitControl
GetUnitControlAttributes
LoadUnitControlFromFile
StoreUnitControlToFile
DeleteUnitControl

The Unit Control object represents a collection of MMS objects, Domains and Program Invocations, that may be
loaded and managed as a unit. Downloads and uploads may be performed on the Domains represented by a Unit
Control object through a single sequence of operations.

NOTE The Unit Control object may be used to minimize the number of PDU's necessary to download large numbers of
Domains or to create large numbers of Program Invocations. Rules concerning the applicability of grouping of these
objects is a local matter and outside the scope of this part of ISO 9506.

13.1.1 Unit Control Object Model

 UNIT-CONTROL ::= CLASS {
&name Identifier,

 -- Shall be unique within the VMD
&accessControl Identifier,
&Domains Identifier,
&ProgramInvocations Identifier
}

13.1.1.1 &name

This field shall uniquely identify the Unit Control object at the VMD. The name scope of the Unit Control object
shall be VMD-specific.

13.1.1.2 &accessControl

This field shall indicate an Access Control List object that governs whether or not the Unit Control object may be
deleted using the DeleteUnitControl service.

13.1.1.3 &Domains

This field shall identify the Domain objects that are constituents of the Unit Control object, and that may be
affected by operations on the Unit Control object.

13.1.1.4 &ProgramInvocations

This field shall identify the Program Invocation objects that are constituents of the Unit Control object, and that
may be affected by operations on the Unit Control object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved144

13.2 Control Element

The Control Element is a complex parameter used in several services to describe a single element of a Unit
Control object.

13.2.1 Structure

The structure of the Control Element parameter is shown in Table 54.

 Parameter name Rsp Cnf

 Control Element
 Begin Domain Definition
 Domain Name
 List of Capabilities
 Sharable
 Load Data
 Continue Domain Definition
 Domain Name
 Load Data
 End Domain Definition
 Domain Name
 Program Invocation Definition
 Program Invocation Name
 List of Domains
 Reusable
 Monitor
 Monitor Type
 Program Invocation State

M
S
M
M
M
M
S
M
M
S
M
S
M
M
M
U
C
C

M(=)
S(=)
M(=)
M(=)
M(=)
M(=)
S(=)
M(=)
M(=)
S(=)
M(=)
S(=)
M(=)
M(=)
M(=)
U(=)
C(=)
C(=)

Table 54 - Control Element parameter

13.2.1.1 Begin Domain Definition

Selection of this parameter shall indicate that a new Domain is about to be defined. If selected, the following
parameters shall appear.

13.2.1.1.1 Domain Name

This parameter, of type Identifier, shall identify the Domain to be processed.

13.2.1.1.2 List of Capabilities

This parameter, of type list of character string, shall identify the &Capabilities associated with this Domain.

13.2.1.1.3 Sharable

This parameter, of type boolean, shall identify the &sharable field of the Domain.

13.2.1.1.4 Load Data

This parameter shall be the initial partial &content or the total &content of the Domain.

13.2.1.2 Continue Domain Definition

Selection of this parameter shall indicate that a Domain identified in a previous Control Element is about to have
more data associated with it. If selected, the following parameters shall appear.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 145

13.2.1.2.1 Domain Name

This parameter, of type Identifier, shall identify the Domain to be processed.

13.2.1.2.2 Load Data

This parameter shall be the (partial) &content of the Domain.

13.2.1.3 End Domain Definition

Selection of this parameter shall indicate that a Domain identified in a previous Control Element is now complete.
If selected, the following parameter shall appear.

13.2.1.3.1 Domain Name

This parameter, of type Identifier, shall identify the Domain to be processed.

13.2.1.4 Program Invocation Definition

Selection of this parameter shall indicate that a Program Invocation definition follows. If selected, the following
parameters shall appear.

13.2.1.4.1 Program Invocation Name

This parameter, of type Identifier, shall indicate the Program Invocation to be defined.

13.2.1.4.2 List of Domains

This parameter, of type list of Identifier, shall indicate the Domains identified in the &Domains field of the
Program Invocation.

13.2.1.4.3 Reusable

This parameter, of type boolean, shall identify the &reusable field of the Program Invocation.

13.2.1.4.4 Monitor

This parameter, of type boolean, shall identify the &monitor field of the Program Invocation.

13.2.1.4.4.1 Monitor Type

This parameter, of type boolean, shall be present if and only if the value of the Monitor parameter is true. The use
of this parameter is defined in 12.2.1.1.5.

13.2.1.4.5 Program Invocation State

This parameter, of type integer, shall indicate, if present, the value of the &programInvocationState field of the
Program Invocation. When used with the UnitControlLoad service, it shall indicate the state into which the
Program Invocation shall be placed. When used with the UnitControlUpload service, it shall indicate the actual
state of the Program Invocation.

13.3 InitiateUnitControlLoad service

The InitiateUnitControlLoad service is used by an MMS client to request a MMS server to create a Unit Control
object and prepare it for loading. The loading process uses two confirmed MMS services such that the MMS
server requests elements of the contents of the Unit Control object. Table 55 shows the sequence of the service
primitives.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved146

MMS Client MMS Server

 InitiateUnitControlLoad.req –>

 UnitControlLoadSegment.rsp –>
 ...

 UnitControlLoadSegment.rsp –>

 <-- UnitControlLoadSegment.req

 ...

 <-- UnitControlLoadSegment.req

 <-- InitiateUnitControlLoad.rsp

Table 55 - Interaction of Unit Control Primitives

13.3.1 Structure

The structure of the component service primitives of the InitiateUnitControlLoad service is shown in table 56.

 Parameter name Req Ind Rsp Cnf CBB

 Argument
 Unit Control Name

 Result(+)

 Result(-)
 Error Type
 Domain Name
 Program Invocation Name

M
M

M(=)
M(=)

S

S
M
S
S

S(=)

S(=)
M(=)
S(=)
S(=)

Table 56 - InitiateUnitControlLoad service

13.3.1.1 Argument

This parameter shall convey the parameters of the InitiateUnitControlLoad service request.

13.3.1.1.1 Unit Control Name

This parameter, of type Identifier, shall specify the name of the Unit Control object.

13.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

13.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure. When failure is indicated, one of the following parameters
shall be returned.

13.3.1.3.1 Domain Name

This parameter shall indicate the Domain that was being created when the error was detected. Either this
parameter or the Program Invocation Name parameter shall be selected.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 147

13.3.1.3.2 Program Invocation Name

This parameter shall indicate the Program Invocation that was being created when the error was detected. Either
this parameter or the Domain Name parameter shall be selected.

13.3.2 Service procedure

13.3.2.1 Preconditions

If a Unit Control object of the specified name already exists, the MMS server shall return a Result(-).

13.3.2.2 Actions

The MMS server shall issue one or more UnitControlLoadSegment requests, as appropriate, until it receives a
response in which the More Follows parameter is false. It shall perform the service procedure prescribed for that
service. If, during the processing of the information contained in the response to the UnitControlLoadSegment
service request, it detects an error either in creating a Domain or a Program Invocation, the MMS server shall halt
the loading process and return a Result(-) indicating the Domain or Program Invocation for which loading was in
progress when the error occurred.

If no error occurs in the processing of the UnitControlLoadSegment services, the MMS server shall return a
Result(+).

13.4 UnitControlLoadSegment service

The UnitControlLoadSegment service is used by an MMS server to obtain Load Data elements from the MMS
client.

13.4.1 Structure

The structure of the component service primitives is shown in Table 57.

 Parameter name Req Ind Rsp Cnf CBB

 Argument
 Unit Control Name

 Result(+)
 List of Control Elements
 More Follows

 Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M

S
M

S(=)
M(=)
M(=)

S(=)
M(=)

Table 57 - UnitControlLoadSegment service

13.4.1.1 Argument

This parameter shall convey the parameters of the UnitControlLoadSegment service request.

13.4.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object in the VMD that is to be loaded.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved148

13.4.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

13.4.1.2.1 List of Control Elements

This parameter shall contain the information necessary to construct the constituent Domains and Program
Invocations of the Unit Control object. The presence of the Program Invocation State parameter of each Control
Element shall be a user option.

13.4.1.2.2 More Follows

This boolean parameter shall indicate whether (true) or not (false) more UnitControlSegment service requests are
needed to complete the construction of the Unit Control object.

13.4.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

13.4.2 Service procedure

The MMS server shall issue a UnitControlLoadSegment request specifying the name of the Unit Control object to
be loaded. Upon receipt of the response, the MMS server shall perform the following actions.

13.4.2.1 Preconditions

For each item in the List of Control Elements the MMS server shall perform the following actions.

a) If the Control Element specifies the beginning of a Domain Definition, the MMS server shall verify that no
Domain of that name exists in the VMD.

b) If the Control Element specifies the continuation of a Domain Definition, the MMS server shall verify that
the Domain exists and is in the loading state.

c) If the Control Element specifies the end of a Domain Definition, the MMS server shall verify that the
Domain exists and that it is in the loading state.

d) If the Control Element specifies a Program Invocation definition, the MMS server shall verify that all the
Domains in the &Domains field of this Program Invocation exist and that they are in the ready state or
that they are in the in-use state and their &sharable field is true.

13.4.2.2 Actions

For each item in the List of Control Elements the MMS server shall perform the following actions.

a) If the Control Element specifies the beginning of a Domain Definition, the MMS server shall create the
Domain, using the List of Capabilities parameter provided, and place it in the loading state. If the Load
Data parameter is provided, it shall begin the loading process, using the Load Data.

b) If the Control Element specifies the continuation of a Domain Definition, the MMS server shall continue
the loading process, using the Load Data parameter provided.

c) If the Control Element specifies the end of a Domain Definition, the MMS server shall place the Domain in
the ready state.

d) If the Control Element specifies a Program Invocation definition, the MMS server shall create the named
Program Invocation, linking it to the indicated Domains. It shall place each of the Domains in the
in-use state. If the Program Invocation State parameter is present, the MMS server shall place the
Program Invocation in the state indicated by this parameter; otherwise, it shall place the Program
Invocation in the idle state.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 149

NOTE If the association is lost during the course of a sequence of UnitControlLoadSegment services such that a Domain is
in an intermediate state, the provisions of 11.1.4.1 apply. Also note the restrictions that clause 8.3 of ISO 9506-2
places on the use of the Conclude service.

13.5 UnitControlUpload service

The UnitControlUpload service is used by an MMS client to obtain Load Data elements from the MMS server.
This service may have to be invoked several times to obtain a complete upload of the Unit Control object.

13.5.1 Structure

The structure of the component service primitives is shown in Table 58.

 Parameter name Req Ind Rsp Cnf CBB

 Argument
 Unit Control Name
 Continue After
 Domain Name
 Upload ID
 Program Invocation

 Result(+)
 List of Control Elements
 Next Element
 Domain Name
 Upload ID
 Program Invocation

 Result(-)
 Error Type

M
M
U
S
S
S

M(=)
M(=)
U(=)
S(=)
S(=)
S(=)

S
M
C
S
S
S

S
M

S(=)
M(=)
C(=)
S(=)
S(=)
S(=)

S(=)
M(=)

Table 58 - UnitControlUpload service

13.5.1.1 Argument

This parameter shall convey the parameters of the UnitControlUpload service request.

13.5.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object in the VMD that is to be uploaded.

13.5.1.1.2 Continue After

This optional parameter shall indicate where in the list of constituents of the Unit Control object to begin the next
Control Element. If this parameter is not present, the upload shall begin at the beginning of the Unit Control
object. If this parameter is present, one of the following parameters shall be selected.

13.5.1.1.2.1 Domain Name

This parameter, of type Identifier, shall indicate the next Domain that is to be uploaded.

13.5.1.1.2.2 Upload ID

This parameter, of type integer, shall indicate the upload state machine currently open for some Domain upload
that is to be continued.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved150

13.5.1.1.2.3 Program Invocation

This parameter, of type Identifier, shall indicate the next Program Invocation whose definition is to be uploaded.

13.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

13.5.1.2.1 List of Control Elements

This parameter shall contain the information necessary to construct the constituent Domains and Program
Invocations of the Unit Control object. The Program Invocation State parameter shall be included in each
Program Invocation definition within a Control Element, and its value shall be set corresponding to the
&programInvocationState field of the Program Invocation.

13.5.1.2.2 Next Element

This optional parameter shall indicate, if present, the first element not transmitted in this list of Control Elements
that should be the next element to be transmitted if another UnitControlUpload request is received. If this
parameter is absent, this shall indicate that uploading of the Unit Control object is complete with this service
response. If this parameter is present, one of the following parameters shall be selected.

13.5.1.2.2.1 Domain Name

This parameter, of type Identifier, shall indicate the next Domain that is to be uploaded.

13.5.1.2.2.2 Upload ID

This parameter, of type integer, shall indicate the upload state machine currently open for some Domain upload
that is to be continued.

13.5.1.2.2.3 Program Invocation

This parameter, of type Identifier, shall indicate the next Program Invocation whose definition is to be uploaded.

13.5.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

13.5.2 Service procedure

For the purposes of responding to the UnitControlUpload service request, the MMS server shall maintain the
constituents of a Unit Control object in an ordered list. An ordering of Domain Names based on the collating
sequence as prescribed in 5.4.2 followed by a similar ordering of Program Invocations is suggested but not
required. This part of ISO 9506 requires only that the ordering algorithm used be unambiguous and be such that
any Program Invocation appear later in the ordering than any Domains on which it depends.

The MMS client may issue a UnitControlUpload request indicating a position in this ordering by identifying the
next Domain to be uploaded, the Domain whose upload is partially complete, or the next Program Invocation
definition to be uploaded. If the MMS client does not specify any such element, the upload is to start from the
beginning of the list.

The MMS server shall verify the consistency of the &Domains field and the &ProgramInvocations field of the
Unit Control object. If any objects so referenced do not exist, the MMS server shall amend the respective list.

The MMS server shall provide definitions for each constituent element of the Unit Control object in order,
determined by its ordering algorithm. For each Domain in the &Domains field of the Unit Control object, the
MMS server shall create an Upload State Machine (see 11.1.4.2) and transmit all or part of the Domain content.
The determination of the necessity of segmentation and the size of the segments shall be a local matter. For each
Program Invocation in the &ProgramInvocations field of the Unit Control object, the MMS server shall transmit a
Program Invocation definition record.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 151

If, for any reason, the entire content of the Unit Control object cannot be contained within a single service
response, the MMS server shall provide an indication of the next element in the order that has not yet been
transmitted.

a) If the next element to be transmitted is a Domain, the MMS server shall indicate the name of this Domain.

b) If a Domain content has been partially transmitted and more content of that Domain remains to be
transmitted, the MMS server shall indicate the identify of the Upload State Machine currently active.

c) If the next element to be transmitted is a Program Invocation, the MMS server shall indicate the name of
this Program Invocation.

If the present transmission exhausts the Unit Control object, that is, it transmits the last element on the list, the
MMS server shall omit the Next Element parameter.

13.6 StartUnitControl service

This service is used by an MMS client to request an MMS server to place all the constituent Program Invocations
of a Unit Control object into the running state.

13.6.1 Structure

The structure of the component service primitives is shown in Table 59.

 Parameter name Req Ind Rsp Cnf CBB

 Argument
 Unit Control Name
 Execution Argument

 Result(+)

 Result(-)
 Error Type
 Start Unit Control Error
 Program Invocation Name
 Program Invocation State

M
M
U

M(=)
M(=)
U(=)

S

S
M
C
M
M

S(=)

S(=)
M(=)
C(=)
M(=)
M(=)

Table 59 - StartUnitControl service

13.6.1.1 Argument

This parameter conveys the parameters of the StartUnitControl service.

13.6.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object whose constituent Program Invocations
are to be started.

13.6.1.1.2 Execution Argument

This parameter may be used to pass information to the Program Invocations that are to be started.

13.6.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved152

13.6.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure. When failure is indicated, the following parameters may be
returned.

13.6.1.3.1 Start Unit Control Error

This parameter shall be included in the Result(-) if the failure was due to the failure of the derived Start procedure
on a specific Program Invocation. If this parameter is included, the following fields shall also appear.

13.6.1.3.1.1 Program Invocation Name

This parameter shall indicate the name of the Program Invocation whose Start service failed.

13.6.1.3.1.2 Program Invocation State

This parameter shall indicate the resulting state of the Program Invocation whose Start service has failed.
Following an unsuccessful Start service, the Program Invocation shall be returned to its previous state if possible,
or it shall be placed in the unrunnable state.

13.6.2 Service procedure

The MMS server shall perform the following actions.

a) For each entry on the &ProgramInvocations field of the Unit Control object, verify that the Program
Invocation exists. If a Program Invocation does not exist, remove its reference from the
&ProgramInvocations field.

b) For each entry on the &ProgramInvocations field of the Unit Control object, place the Program Invocation
in the running state. This shall be done as follows:

 1) If the Program Invocation is already in the running, starting, or resuming state, do
nothing.

 2) If the Program Invocation is in the idle or resetting state, perform a Start service procedure
(see 12.4).

 3) If the Program Invocation is in the stopped or stopping state, perform a Resume procedure
(see 12.6).

 4) If the Program Invocation is in the unrunnable state, return a Result(-) with a Start Unit Control
Error parameter indicating the failed Program Invocation and its state.

 5) If any Start procedure on a constituent Program Invocation fails, return a Result(-) with a Start Unit
Control Error parameter indicating the failed Program Invocation and its state.

c) Return a Result(+).

13.7 StopUnitControl service

This service is used by an MMS client to request an MMS server to move all the constituent Program Invocations
of a Unit Control object into the stopped state.

13.7.1 Structure

The structure of the component service primitives is shown in Table 60.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 153

 Parameter name Req Ind Rsp Cnf CBB

 Argument
 Unit Control Name

 Result(+)

 Result(-)
 Error Type
 Stop Unit Control Error
 Program Invocation Name
 Program Invocation State

M
M

M(=)
M(=)

S

S
M
C
M
M

S(=)

S(=)
M(=)
C(=)
M(=)
M(=)

Table 60 - StopUnitControl service

13.7.1.1 Argument

This parameter shall convey the parameter of the StopUnitControl service.

13.7.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object whose constituent Program Invocations
are to be stopped.

13.7.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

13.7.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure. When failure is indicated, the following parameters may be
returned.

13.7.1.3.1 Stop Unit Control Error

This parameter shall be included in the Result(-) if the failure was due to the failure of the derived Stop procedure
on a specific Program Invocation. If this parameter is included, the following fields shall also appear.

13.7.1.3.1.1 Program Invocation Name

This parameter shall indicate the name of the Program Invocation whose Stop service failed.

13.7.1.3.1.2 Program Invocation State

This parameter shall indicate the resulting state of the Program invocation whose Stop service has failed.
Following an unsuccessful Stop service, the Program Invocation shall be returned to its previous state if possible,
or it shall be placed in the unrunnable state.

13.7.2 Service procedure

The MMS server shall perform the following actions.

a) For each element of the &ProgramInvocations field of the Unit Control object, verify that the Program
Invocation exists. If this condition is not satisfied, remove the reference to the Program Invocation from
the &ProgramInvocations field.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved154

b) For each element of the &ProgramInvocations field of the Unit Control object, place each Program
Invocation that is in the running state into the stopped state. This shall be done as follows:

 1) If the Program Invocation is already in the stopped, stopping, idle, resetting, or
unrunnable state, do nothing.

 2) If the Program Invocation is in the running or starting state, perform a Stop procedure (see
12.5).

 3) If any Stop procedure on a constituent Program Invocation fails, return a Result(-) with a Stop Unit
Control Error parameter indicating the failed Program Invocation and its state.

c) Return a Result(+).

13.8 CreateUnitControl service

The CreateUnitControl service is used by an MMS client to request an MMS server to create a new Unit Control
object with a specified set of Domains and/or Program Invocations.

13.8.1 Structure

The structure of the component service primitives is shown in Table 61.

 Parameter name Req Ind Rsp Cnf CBB

 Argument
 Unit Control Name
 List of Domains
 List of Program Invocations

 Result(+)

 Result(-)
 Error Type

M
M
M
M

M(=)
M(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 61 - CreateUnitControl service

13.8.1.1 Argument

This parameter shall convey the parameters of the CreateUnitControl service request.

13.8.1.1.1 Unit Control Name

This parameter, of type Identifier, is the name that shall be assigned to the newly created Unit Control object.

13.8.1.1.2 List of Domains

This parameter, of type list of Identifier, shall specify zero or more Domains that are to be referenced by the
&Domains field of the Unit Control object.

13.8.1.1.3 List of Program Invocations

This parameter, of type list of Identifier, shall specify zero or more Program Invocations that are to be referenced
by the &ProgramInvocations field of the Unit Control object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 155

13.8.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

13.8.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

13.8.2 Service procedure

The MMS server shall perform the following actions.

a) Create a Unit Control object and assign it the name as supplied in the Unit Control Name parameter.

b) For each element of the List of Domains parameter (if any), add a reference to that Domain to the
&Domains field of the Unit Control object.

c) For each element of the List of Program Invocations parameter (if any), add a reference to that Program
Invocation to the &ProgramInvocations field of the Unit Control object.

d) Return a Result(+)

13.9 AddToUnitControl service

The AddToUnitControl service is used by an MMS client to request an MMS server to add Domains and/or
Program Invocations to the Unit Control object.

13.9.1 Structure

The structure of the component service primitives is shown in Table 62.

 Parameter name Req Ind Rsp Cnf CBB

 Argument
 Unit Control Name
 List of Domains
 List of Program Invocations

 Result(+)

 Result(-)
 Error Type

M
M
M
M

M(=)
M(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 62 - AddToUnitControl service

13.9.1.1 Argument

This parameter shall convey the parameters of the AddToUnitControl service request.

13.9.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object in the VMD whose list of constituents is to
be altered.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved156

13.9.1.1.2 List of Domains

This parameter, of type list of Identifier, shall specify zero or more Domains that are to be added to the &Domains
field of the Unit Control object.

13.9.1.1.3 List of Program Invocations

This parameter, of type list of Identifier, shall specify zero or more Program Invocations that are to be added to
&ProgramInvocations field of the Unit Control object.

13.9.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

13.9.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

13.9.2 Service procedure

The MMS server shall perform the following actions.

a) For each element of the List of Domains parameter (if any), add a reference to that Domain to the
&Domains field of the Unit Control object.

b) For each element of the List of Program Invocations parameter (if any), add a reference to that Program
Invocation to the &ProgramInvocations field of the Unit Control object.

c) Return a Result(+)

13.10 RemoveFromUnitControl service

The RemoveFromUnitControl service is used by an MMS client to request an MMS server to remove Domains, or
Program Invocations, or both from the Unit Control object.

13.10.1 Structure

The structure of the component service primitives is shown in Table 63.

 Parameter name Req Ind Rsp Cnf CBB

 Argument
 Unit Control Name
 List of Domains
 List of Program Invocations

 Result(+)

 Result(-)
 Error Type

M
M
M
M

M(=)
M(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 63 - RemoveFromUnitControl service

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 157

13.10.1.1 Argument

This parameter shall convey the parameters of the RemoveFromUnitControl service request.

13.10.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object whose list of constituents is to be altered.

13.10.1.1.2 List of Domains

This parameter, of type list of Identifier, shall specify zero or more Domains that are to be removed from the
&Domains field of the Unit Control object.

13.10.1.1.3 List of Program Invocations

This parameter, of type list of Identifier, shall specify zero or more Program Invocations that are to be removed
from the &ProgramInvocations field of the Unit Control object.

13.10.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

13.10.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

13.10.2 Service procedure

The MMS server shall perform the following actions.

a) For each element of the List of Domains parameter (if any), remove the reference to that Domain from the
&Domains field of the Unit Control object.

b) For each element of the List of Program Invocations parameter (if any), remove the reference to that
Program Invocation from the &ProgramInvocations field of the Unit Control object.

c) Return a Result(+)

13.11 GetUnitControlAttributes service

This service is used by an MMS client to request an MMS server to provide the list of constituent Domains and
Program Invocations of a Unit Control object.

13.11.1 Structure

The structure of the component service primitives is shown in Table 64.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved158

 Parameter name Req Ind Rsp Cnf CBB

 Argument
 Unit Control Name

 Result(+)
 List of Domains
 List of Program Invocations

 Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M

S
M

S(=)
M(=)
M(=)

S(=)
M(=)

Table 64 - GetUnitControlAttributes service

13.11.1.1 Argument

This parameter shall convey the parameter of the GetUnitControlAttributes service request.

13.11.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object for which the attributes are to be obtained.

13.11.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

13.11.1.2.1 List of Domains

This parameter, of type list of Identifier, shall specify the names of the Domains that are referenced by the
&Domains field of the Unit Control object.

13.11.1.2.2 List of Program Invocations

This parameter, of type list of Identifier, shall specify the names of the Program Invocations that are referenced by
the &ProgramInvocations field of the Unit Control object.

13.11.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

13.11.2 Service procedure

The MMS server shall perform the following actions.

a) For each entry in the &ProgramInvocations field of the Unit Control object, verify that the Program
Invocation exists. If the Program Invocation does not exist, remove its reference from the
&ProgramInvocations field of the Unit Control object.

b) For each entry in the &Domains field of the Unit Control object, verify that the Domain exists. If the
Domain does not exist, remove its reference from the &Domains field of the Unit Control object.

c) Return a Result(+) with the List of Domains parameter and List of Program Invocations parameter as
specified in the &Domains field and &ProgramInvocations field of the Unit Control object.

NOTE Following the model of Unit Control object given in this part of ISO 9506, it is possible that the list of constituents of
a Unit Control object may become inconsistent with the actual set of Domains and Program Invocations, e.g.
following the explicit deletion of a Domain. The service procedure of this subclause is intended to reestablish

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 159

consistency for this Unit Control object prior to completion of the service. A real implementation may choose to
maintain consistency at all times by employing a set of inverse references in each Domain and Program Invocation.
However, this is not required. An alternate implementation technique could be to implement the references within
the Unit Control object by name, reestablishing consistency only when required.

13.12 LoadUnitControlFromFile service

The LoadUnitControlFromFile service is used by an MMS client to request an MMS server to create a Unit
Control object and load the Unit Control object using information available locally or from a third party.

13.12.1 Structure

The Structure of the component service primitives is shown in Table 65.

 Parameter name Req Ind Rsp Cnf CBB

 Argument
 Unit Control Name
 File Name
 Third Party

 Result(+)

 Result(-)
 Error Type
 Initiate Unit Control Error
 Domain Name
 Program Invocation Name

M
M
M
U

M(=)
M(=)
M(=)
U(=)

S

S
M
M
S
S

S(=)

S(=)
M(=)
M(=)
S(=)
S(=)

tpy

Table 65 - LoadUnitControlFromFile service

13.12.1.1 Argument

This parameter shall convey the parameters of the LoadUnitControlFromFile service request.

13.12.1.1.1 Unit Control Name

This parameter shall specify the name of the Unit Control object to be loaded.

13.12.1.1.2 File Name

This parameter, of type FileName, shall specify the name of the file containing the information to be loaded.

13.12.1.1.3 Third Party

This parameter, of type ApplicationReference, shall specify the application reference of the Application Process
through which the named file may be accessed. Support of processing for this parameter is an implementation
option that shall be implemented if support for the tpy parameter conformance building block is claimed. If it is
implemented, its use is a user option. If this parameter is absent, the MMS server shall attempt to access the
requested file directly.

13.12.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved160

13.12.1.3 Result (-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure. When failure is indicated, one of the following parameters
shall be returned.

13.12.1.3.1 Domain Name

This parameter shall indicate the Domain that was being created when the error was detected. Either this
parameter or the Program Invocation Name parameter may be present, but not both.

13.12.1.3.2 Program Invocation Name

This parameter shall indicate the Program Invocation that was being created when the error was detected. Either
this parameter or the Domain Name parameter may be present but not both.

13.12.2 Service procedure

13.12.2.1 Preconditions

The MMS server shall verify that the Unit Control object of the specified name does not exist.

13.12.2.2 Actions

If a third party is specified, establish an association with that application if none exists; thereafter take appropriate
action to cause the named Unit Control object to be loaded. If no third party is specified, perform the necessary
steps to obtain the file through local means and load it into the specified Unit Control object. If the loading is
successful, return a Result(+); otherwise return a Result(-) indicating in the Initiate Unit Control Error parameter
the reason for failure.

13.13 StoreUnitControlToFile service

The StoreUnitControlToFile service is used by an MMS client to request an MMS server to store the Domains and
Program Invocations of a Unit Control object either at a third party site or locally.

13.13.1 Structure

The structure of the component service primitives is shown in Table 66.

 Parameter name Req Ind Rsp Cnf CBB

 Argument
 Unit Control Name
 File Name
 Third Party

 Result(+)

 Result(-)
 Error Type

M
M
M
U

M(=)
M(=)
M(=)
U(=)

S

S
M

S(=)

S(=)
M(=)

tpy

Table 66 - StoreUnitControlToFile service

13.13.1.1 Argument

This parameter shall convey the parameters of the StoreUnitControlToFile service request.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 161

13.13.1.1.1 Unit Control Name

This parameter shall specify the name of the Unit Control object for which the content is to be stored.

13.13.1.1.2 File Name

This parameter, of type FileName, shall specify the name of the file in which the information is to be stored.

13.13.1.1.3 Third Party

This optional parameter, of type ApplicationReference, shall specify the application reference of the Application
Process on which the file store resides that is to receive the contents of the specified Unit Control object. Support
of processing for this parameter is an implementation option that shall be implemented if support for the tpy
parameter conformance building block is claimed. If it is implemented, its use is a user option. If this parameter is
absent, the method of storing this file shall be a local matter.

13.13.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

13.13.1.3 Result (-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

13.13.2 Service procedure

13.13.2.1 Preconditions

The MMS server shall verify that the Unit Control object of the specified name exists.

If this condition is not satisfied, the MMS server shall return a Result(-).

13.13.2.2 Actions

If the third party parameter has been provided, the MMS server shall establish an association with that application
if none exists; thereafter it shall take appropriate action to cause the named Unit Control object to be stored at the
third party site. If no third party is specified, the MMS server shall perform the necessary steps to store the Unit
Control object in the file specified through local means. If the process is successful, return a Result(+); otherwise
return a Result(-).

13.14 DeleteUnitControl service

This service is used by an MMS client to request an MMS server to delete the Unit Control object and all its
constituent elements.

13.14.1 Structure

The structure of the component service primitives is shown in Table 67.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved162

 Parameter name Req Ind Rsp Cnf CBB

 Argument
 Unit Control Name

 Result(+)

 Result(-)
 Error Type
 Domain Name
 Program Invocation Name

M
M

M(=)
M(=)

S

S
M
S
S

S(=)

S(=)
M(=)
S(=)
S(=)

Table 67 - DeleteUnitControl service

13.14.1.1 Argument

This parameter conveys the parameter of DeleteUnitControl service.

13.14.1.1.1 Unit Control Name

This parameter, of type Identifier, shall identify the Unit Control object that is to be deleted with its constituent
elements.

13.14.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

13.14.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure. When failure is indicated, one of the following parameters
shall be returned.

13.14.1.3.1 Domain Name

This parameter shall indicate the Domain whose deletion was being attempted when the error was detected. Either
this parameter or the Program Invocation Name parameter shall be selected.

13.14.1.3.2 Program Invocation Name

This parameter shall indicate the Program Invocation whose deletion was being attempted when the error was
detected. Either this parameter or the Domain Name parameter shall be selected.

13.14.2 Service procedure

The MMS server shall perform the following actions.

a) For each entry in the &ProgramInvocations field of the Unit Control object perform the following actions.

1) Verify that the Program Invocation exists. If the Program Invocation does not exist, remove its
reference from the &ProgramInvocations field of the Unit Control object and skip the remainder of
this step for this entry.

2) Verify that the Program Invocation is not in the running state. If this condition is not satisfied,
return a Result(-) and skip the remainder of the procedure.2

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 163

3) Perform a DeleteProgramInvocation service procedure as specified in 12.3 and remove the
reference to this Program Invocation from the &ProgramInvocations field of the Unit Control
object. If this procedure fails, return a Result(-) and skip the remainder of the procedure.

b) For each entry in the &Domains field of the Unit Control object perform the following actions.

1) Verify that the Domain exists. If the Domain does not exist, remove its reference from the
&Domains field of the Unit Control object and skip the remainder of this step for this entry.

2) Verify that the Domain is not in the in-use state. If this condition is not satisfied, return a
Result(-) and skip the remainder of the procedure.

3) Perform a DeleteDomain service procedure as specified in 11.12 and remove the reference to this
Domain from the &Domains field of the Unit Control object. If this procedure fails, return a
Result(-) and skip the remainder of the procedure.

c) Delete the Unit Control object from the VMD.

d) Return a Result(+).

If the procedure returns a Result(-), the Unit Control object may have had some of its Domains and Program
Invocations deleted. In this case, the Delete Unit Control Error parameter shall indicate the Domain or Program
Invocation on which the procedure stopped, and the current contents of the Unit Control object shall indicate the
Domains and Program Invocations that still remain on the Unit Control object.

NOTE Following the model of Unit Control object given in this part of ISO 9506, it is possible that the list of constituents of
a Unit Control object may become inconsistent with the actual set of Domains and Program Invocations, e.g.
following the explicit deletion of a Domain. The service procedure of this subclause is intended to reestablish
consistency for this Unit Control object prior to completion of the service. A real implementation may choose to
maintain consistency at all times by employing a set of inverse references in each Domain and Program Invocation.
However, this is not required. An alternate implementation technique could be to implement the references within
the Unit Control object by name, reestablishing consistency only when required.

14 Variable Access Services

This clause provides object models for the following objects:

UNNAMED-VARIABLE
NAMED-VARIABLE

NAMED-VARIABLE-LIST
NAMED-TYPE

This clause specifies the following services:

Read
Write
InformationReport
GetVariableAccessAttributes
DefineNamedVariable
DeleteVariableAccess

DefineNamedVariableList
GetNamedVariableListAttributes
DeleteNamedVariableList
DefineNamedType
GetNamedTypeAttributes
DeleteNamedType

The variable access services provide facilities that allow a MMS-client to access typed variables defined at the
VMD. These facilities are provided by four objects in the VMD model, and by twelve services that operate upon
these objects. Subclause 14.1 describes the MMS model for variable access. This is followed in 14.2 by a
description of MMS types, in 14.3 by a description of MMS-definable alternate access, in 14.4 by a description of
MMS data values, and in 14.5 by a description of parameters that specify access to variables. The variable access
services are described in 14.6 through 14.17. Finally 14.18 describes static conformance requirements that apply
for this clause.

CLARIFICATION: This clause describes the mapping between virtual objects, called MMS variables, and real
objects, called "real" variables. MMS variables are not variables in the usual sense, but rather
represent access paths to the underlying real objects. MMS variables do not have a true "value"
attribute, but through the V-Put and V-Get functions they provide an access method to the value
of the underlying real variables. These real objects may be true system variables, or they may be
system constants, that is configuration parameters, or they may represent system procedures that
generate a value, or other objects. Real variables may have addresses and may be described as

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved164

contiguous or noncontiguous. Such concepts do not apply to MMS variables. In this context the
word "real" means "having concrete existence", not "floating-point".

14.1 The MMS Variable Access Model

A "variable" is an abstract element of the VMD that is capable of providing (when read) or accepting (when
written), or both, a typed data value. A "type description" is an abstract description of the class of data that may be
conveyed by a variable's value. A variable's type description determines its abstract syntax, its range of possible
values, and its representation while being communicated using MMS.

The MMS variable access services have as their focal point the reading and writing of values of variables (or parts
of variables) residing at the VMD. The following paragraphs describe the MMS variable access model by
describing the variable access objects and by describing the services that create, manipulate, or destroy these
objects.

An MMS server that allows access to one or more of its real variables using the MMS variable access services
shall provide a mapping between the real variables for which access is allowed and one or more MMS variable
access objects.

NOTE Prior to reading the remainder of the variable access model, the reader may find it helpful to review "Guidance To
Implementors" in 14.19.

14.1.1 Objects that Describe Variables

MMS defines two objects that describe the mapping between an MMS variable and a real variable at the VMD.
They are the Unnamed Variable object and the Named Variable object. These objects provide for two distinct
levels of abstraction.

The abstraction represented by the Unnamed Variable object is very close to the physical architecture of the real
system. Unnamed Variable objects model device-dependent aspects of an addressable facility of the VMD. An
Unnamed Variable object provides a mapping between the inherent type description represented by an address and
the MMS representation for that type description. An Unnamed Variable object's existence corresponds with the
existence of the VMD. This object is only available when the vadr parameter conformance building block is
supported.

The abstraction represented by the Named Variable object models the application's view of a real variable at the
VMD. A Named Variable object's existence may be specified to correspond with the life of a Domain, of an
application association or of the VMD. The Named Variable object is only available when the vnam parameter
conformance building block is supported.

Though both Named Variable and Unnamed Variable objects may be used to model real variables at the VMD,
there are significant differences between these objects and the facilities that they provide for the MMS-client.

a) The Named Variable object describes access to the real variable using an application process determined
name, whereas the Unnamed Variable object describes access to the real variable using a device-specific
address.

b) The Named Variable object may be used to describe a variable that either does not have a known address
(a computed variable) or that has an address that is not made public. The Unnamed Variable object
requires a known, fixed address for the variable.

c) A Named Variable object may be used to describe a set of one or more application-related data elements
that are accessed using a single name as a single operation (see 14.1.1.1), or to describe a more explicit
type description for a set of one or more Unnamed Variable objects, or both. An Unnamed Variable
object, on the other hand, models access to the built-in, implementation-dependent aspects of an
addressable facility of the VMD.

This International Standard provides services that allow a MMS-client to define Named Variable objects in terms
of Unnamed Variable objects. These services are primarily intended for use in bridging the gap between the two
environments for devices that do not directly support the vnam-only (see 14.19.1) environment, whether due to
age or simplicity, or both.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 165

14.1.1.1 Requirements for Access to MMS Variables

The mapping of a Named Variable object or an Unnamed Variable object to a real variable shall ensure that access
(to the real variable, using the object) either succeeds or fails; partial success shall not be reported.

NOTE In the case of write failure, for example due to a hardware fault in the real system, a partial result from the write may
be visible to a subsequent access, either local or remote.

Additionally, the MMS server should guarantee, if possible, that access to an MMS variable is not interruptible. In
other words, read access should return a value representing a single logical instant in the state of the VMD and
write access should alter the state of the VMD at a single logical instant. Since such guarantees may not be
possible, or if possible for some variables, may not be possible for all variables, the static conformance statement
for the MMS server shall state whether uninterruptible access is supported and, if supported, under what
constraints it is guaranteed.

14.1.1.2 Relationship Between MMS Variables and the Real System

The relationship between a real variable and the MMS object that is used to access it is specified by a pair of
abstract functions. These functions are described below.

14.1.1.2.1 The V-Get Function

The V-Get function obtains the value of an MMS variable from the state of the VMD. (Here, state encompasses
all aspects of the VMD's operation that relate to the mapping of the MMS variable to the real system.) The
parameters of the V-Get function are the state of the VMD, the variable's access method (including its address if
the access method is public), its type description and any alternate access that applies for the access. Failure of
the conditions specified in the Access Control List object(s) for service class = READ requires the access of the
MMS variable to fail.

If the access succeeds, the result is a value containing the accessed data elements of the real variable. The abstract
type description of this value is specified by the type specification (14.2) and alternate access (14.3).

In the case of access failure, the result is a reason for failure. (See Data Access Error in 14.4.)

14.1.1.2.2 The V-Put Function

The V-Put function updates the state of the VMD with the value of an MMS variable. (Once again, state
encompasses all aspects of the VMD's operation that relate to the mapping of the MMS variable to the real
system). The parameters of the V-Put function are the variable's value, access method, type description and
alternate access (if applicable). Given successful access, the MMS variable's type description and alternate access,
if applicable, are applied to the MMS value to compute the real value of the variable and the result is used to
update the state of the VMD. If this update fails, the resulting state of the VMD is unspecified and the access fails,
giving a reason for failure. Failure of the conditions specified in the Access Control List object(s) for service class
= WRITE requires the access of the MMS variable to fail.

14.1.1.3 Enforcement of Variable Access Privilege

Protection requirements (if any) for an MMS variable are inherited from the underlying real variable. These
requirements are established by the MMS server, based on local criteria. They are not specified by this part of ISO
9506. These protection requirements are combined with the explicit protection requirements of the Access Control
List object for service class = READ or WRITE as appropriate. The value OBJECT-ACCESS-DENIED for the
Data Access Error shall be used to indicate that a request for variable access has been denied due to insufficient
privilege.

14.1.2 The Unnamed Variable object

The Unnamed Variable object describes the mapping of a single unnamed MMS variable to a real variable existing
at a known and fixed address within the VMD. This mapping shall be such that the requirements of 14.1.1.1 are
satisfied.

An Unnamed Variable object is never created or destroyed. Its existence is inherent in the architecture of the
VMD. When vadr is supported, the content of every public (remotely visible) address is modeled as an
Unnamed Variable object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved166

Example: A general-purpose, byte-addressable device might assign the type "octet" to each public address. A
special-purpose device with a small number of addresses might assign a specific type, based on the known use
of the content of a specific address.

The attributes of the Unnamed Variable object are specified below, followed by a brief description of the services
that operate on this object.

 UNNAMED-VARIABLE ::= CLASS {
&address Address,
&accessControl Identifier,
&typeDescription TypeDescription,
&value Data,
&accessMethod ENUMERATED {

public }
 -- The field '&accessMethod' shall have a value equal to public.

}

14.1.2.1 &address

The &address field shall provide the location of the real variable in the system that supports the VMD.

 Address ::= CHOICE {
numericAddress [0] IMPLICIT Unsigned32,
symbolicAddress [1] MMSString,
unconstrainedAddress [2] IMPLICIT OCTET STRING }

14.1.2.2 &accessControl

The &accessControl field shall specify an Access Control List object that provides conditions under which this
Unnamed Variable may be read or written.

14.1.2.3 &typeDescription

The &typeDescription field of an Unnamed Variable shall indicate one of the choices of the TypeDescription type.
The TypeDescription type is described in 14.2.2.

14.1.2.4 &value

The &value field of an Unnamed Variable shall indicate the value associated with this variable. The choice of the
Data type to be used shall be the same choice as is made for the &typeDescription field.

14.1.2.5 &accessMethod

The &accessMethod field for an Unnamed Variable object shall specify public access.

14.1.2.6 Operations On The Unnamed Variable object

The services that operate on the Unnamed Variable object are listed below.

a) Read - This service uses the V-Get function to obtain the current &value of a real variable described by the
Unnamed Variable object;

b) Write - This service uses the V-Put function to replace the current &value of a real variable described by
the Unnamed Variable object;

c) InformationReport - This service uses the V-Get function to obtain the current &value of a real variable
described by the Unnamed Variable object;

d) GetVariableAccessAttributes - This service returns the attributes of a Unnamed Variable object.

14.1.3 The Named Variable object

The Named Variable object describes the mapping between an MMS variable and a real, application-defined,
variable at the VMD. This mapping shall be such that the requirements of 14.1.1.1 are satisfied.

NOTE It is recommended that a real variable have one and only one mapping to a Named Variable object. This
International Standard does not require this.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 167

The attributes of the Named Variable object are specified below, followed by a brief description of the services
that operate on this object.

 NAMED-VARIABLE ::= CLASS {
&name ObjectName,

 -- shall be unique within its range of specification (VMD, Domain, AA)
&accessControl Identifier,
&typeDescription TypeDescription,
&value Data,
&accessMethod ENUMERATED {

public ,
anythingElse ,
... }

IF (vadr)
, &address Address OPTIONAL
 -- The presence of this field shall correspond to the
 -- field &access Method having a value equal to public.
 -- The absence of this field shall correspond to the
 -- field &accessMethod having a value equal to anything except public.
ENDIF
 -- The following field shall occur
 -- if and only if the sem CBB has been negotiated.
IF (sem)
, &meaning ObjectName OPTIONAL
ENDIF

}

14.1.3.1 &name

The &name field uniquely identifies a Named Variable object. A &name is an MMS Object Name and may be
defined with VMD-specific, Domain-specific, or Application Association-specific scope.

14.1.3.2 &accessControl

The &accessControl field shall specify an Access Control List object that provides conditions under which this
Named Variable may be read, written, deleted, or have its access control changed.

14.1.3.3 &typeDescription

The &typeDescription field of a Named Variable object shall indicate one of the choices of the TypeDescription
type. The TypeDescription type is described in 14.2.2.

14.1.3.4 &value

The &value field of a Named Variable shall indicate the value associated with this variable. The choice of the Data
type to be used shall be the same choice as is made for the &typeDescription field.

14.1.3.5 &accessMethod

The &accessMethod field for an Named Variable object shall specify the mode of access. If the Address is
declarable (and obtainable) using MMS services, the &accessMethod field shall have the value public, and the
Address attribute shall be defined and available to MMS clients requesting the attributes of the Named Variable
object. Otherwise, the value of this field is a local issue. The public access method shall not be available unless
vadr is supported.

An MMS server may declare an MMS variable that exists only at the instant of access. Such a variable does not
have an address per se. It shall be defined by the MMS server using local means and shall have an
&accessMethod other than public. Also, an MMS server may declare an MMS variable that does have an
address, but choose not to reveal this address to MMS clients. Such a variable shall also be locally defined with an
&accessMethod other than public.

If the &accessMethod is public the following field shall appear. If the &accessMethod is anything but
public, the following field shall not appear.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved168

14.1.3.6 &address

The &address field shall provide the location of the real variable in the system that supports the VMD. This field
shall be present if and only if the value of the &accessMethod is public.

The data elements of the variable, as described by the &typeDescription field, are located in contiguous addresses,
starting with the first data element at the address specified by this field. The types of the data elements shall be
compatible with the types of the data elements of the Unnamed Variable objects that are encompassed by these
contiguous addresses. The determination of type "compatibility" is a local issue.

NOTE 1 The intent is to allow the MMS server to refuse to accept a definition containing a type conflict, for example a
request to define a known boolean as a floating-point. The definition is left open in order to allow the MMS server to
accept a definition requesting a tightening of type specification, for example a declaration that a "word" (bitstring)
contains an integer.

NOTE 2 This International Standard does not provide for allocation of real variables in the VMD. MMS services may be used
to describe where and how a real variable has been allocated. However, such usage requires detailed knowledge of
the specific VMD implementation, including the specific application of the VMD in which the real variable is
declared.

NOTE 3 The requirement of contiguity of address is only for variables whose &accessMethod is public.

14.1.3.7 &meaning

This field may be used to store the name of a Named Type object; the name of this object may convey semantics
about the Named Variable object. The value of this field is set by the DefineNamedVariable service and may be
reported by the GetVariableAccessAttributes service if the sem CBB has been negotiated. This field may also be
part of a predefined Named Variable.

14.1.3.8 Operations On The Named Variable object

The services that operate upon the Named Variable object are listed below.

a) Read - This service uses the V-Get function to obtain the &value of a real variable described by the Named
Variable object;

b) Write - This service uses the V-Put function to replace the &value of a real variable described by the
Named Variable object;

c) InformationReport - This service uses the V-Get function to obtain the &value of a real variable described
by the Named Variable object;

d) DefineNamedVariable - This service creates a Named Variable object;

e) GetVariableAccessAttributes - This service returns the attributes of a Named Variable object;

f) DeleteVariableAccess - This service deletes a Named Variable object.

14.1.4 The Named Variable List object

The Named Variable List object describes access to multiple MMS variables using a single name.

The Named Variable List object shall specify a mapping of a single MMS name to a list of independent MMS
variables. The Named Variable List object is designed to maintain client awareness of the independence of the
underlying real variables. This object provides a mechanism to avoid repeated transfer of frequently used variable
access lists. Access using a Named Variable List succeeds or fails at the level of the members of the list.
Therefore partial success may be reported.

Each element of this list shall be either a Named Variable object or an Unnamed Variable object. Access to the
individual elements of the list is regulated by the requirements of 14.1.1.1. Access to the list as a whole is not
governed by this requirement. Thus, access using the Named Variable List object shall report success or failure
for each object referenced by the list. Access using a Named Variable List object is analogous to independent
accesses using the list's referenced variable access objects.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 169

The attributes of the Named Variable List object are specified below, followed by a brief description of the
services that operate on this object.

 NAMED-VARIABLE-LIST ::= CLASS {
&name ObjectName,

 -- shall be unique within its range of specification (VMD, Domain, AA)
&accessControl Identifier,
&listOfVariables VARIABLE-LIST-ITEM }

14.1.4.1 &name

The &name field uniquely identifies a Named Variable List object. A &name is an MMS Object Name and may
be defined with VMD-specific, Domain-specific, or Application Association-specific scope.

14.1.4.2 &accessControl

The &accessControl field shall specify an Access Control List object that provides conditions under which this
Named Variable List object may be read, written, deleted, or have its access control changed.

14.1.4.3 &listOfVariables

The &listOfVariables field identifies one or more VARIABLE-LIST-ITEM objects. Each of these items identifies
a variable (named or unnamed) and an optional alternate access specification.

 VARIABLE-LIST-ITEM ::= CLASS {
 -- one and only one of the following two lines shall appear
IF (vadr)

&unnamedItem Address OPTIONAL
IF (vnam)
,
ENDIF
ENDIF
IF (vnam)

&namedItem ObjectName OPTIONAL
ENDIF
IF (valt)

-- the following specification may be included
, &alternateAccess AlternateAccess OPTIONAL
ENDIF

}

14.1.4.3.1 &unnamedItem

The &unnamedItem field provides a specification for access to a variable identified by an Unnamed Variable
object. This choice may be present only if the vadr parameter CBB has been negotiated.

14.1.4.3.2 &namedItem

The &namedItem field provides a specification for access to a variable identified by a Named Variable object.
This choice may be present only if the vnam parameter CBB has been negotiated.

14.1.4.3.3 &alternateAccess

The &alternateAccess field provides an Alternate Access Specification to the (Named or Unnamed) Variable
object. This field may be present only if the valt parameter CBB has been negotiated.

14.1.4.4 Operations On The Named Variable List object

The services that operate upon the Named Variable List object are listed below.

a) Read - This service uses the &listOfVariable attribute in order to determine the variables that should be
read and performs the Read service on these variables;

b) Write - This service uses the &listOfVariable attribute in order to determine the variables that are to be
written and performs the Write service on these variables;

c) InformationReport - This service uses the &listOfVariable attribute in order to determine the variables to
be reported and performs an Information Report service on these variables;

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved170

d) DefineNamedVariableList - This service creates a Named Variable List object;

e) GetNamedVariableListAttributes - This service returns the attributes of a Named Variable List object;

f) DeleteNamedVariableList - This service deletes a Named Variable List object.

14.1.5 The Named Type object

The Named Type object provides for the assignment of a name to an MMS type description. This object is
available only when both the vadr and the vnam parameter conformance building blocks are supported.

The attributes of the Named Type object are specified below, followed by a brief description of the services that
operate on this object.

 NAMED-TYPE ::= CLASS {
&name ObjectName,

 -- shall be unique within its range of specification (VMD, Domain, AA)
&accessControl Identifier,
&typeDescription TypeDescription

 --
 -- The following field shall occur
 -- if and only if the sem CBB has been negotiated.
IF (sem)
, &meaning ObjectName OPTIONAL
ENDIF

}

14.1.5.1 &name

The &name field uniquely identifies a Named Type object. A &name is an MMS Object Name and may be
defined with VMD-specific, Domain-specific, or Application Association-specific scope.

14.1.5.2 &accessControl

The &accessControl field shall specify an Access Control List object that provides conditions under which this
Named Type may be deleted or have its access control changed.

14.1.5.3 &typeDescription

The &typeDescription field shall indicate a choice from the TypeDescription abstract type. The TypeDescription
type is described in 14.2.2.

14.1.5.4 &meaning

This field may be used to store the name of another Named Type object; the name of this object may convey
semantics about this Named Type object. The value of this field is set by the DefineNamedType service and may
be reported by the GetNamedTypeAttributes service if the sem CBB has been negotiated. This field may also be
part of a predefined Named Type.

14.1.5.5 Operations On The Named Type object

The services that operate upon the Named Type object are listed below.

a) DefineNamedType - This service creates a Named Type object;

b) GetNamedTypeAttributes - This service returns the attributes of a Named Type object;

c) DeleteNamedType - This service deletes a Named Type object;

d) Read, Write, DefineNamedVariable, DefineNamedVariableList, DefineNamedType - These services use
the &typeDescription field in order to resolve a Type Name parameter that may be included in the service
request.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 171

14.2 Specification of Types

All MMS variables are typed. A variable's type description, as contained in the &typeDescription field of the
Named Variable or Unnamed Variable object, or as specified by the Variable Description parameter's Type
Specification parameter at the time of access, shall provide a specification of the abstract syntax and range of
possible values of the variable, and also provide the basis upon which alternate access to the variable may be
specified.

The type description of a variable may be simple, specifying access to a single data element, or complex,
specifying access to a group of related types. For each complex variable (array or structure), from the information
available in a variable's access method (and address, if applicable), and its type description, the MMS server shall
be able to locate every simple data element of the real variable.

14.2.1 TypeDescription type

The &typeDescription field of the Unnamed Variable object, the Named Variable object, or the Named Type
object shall indicate one of the choices of the TypeDescription type.

 TypeDescription ::= CHOICE {
IF (str1)

array [1] IMPLICIT SEQUENCE {
packed [0] IMPLICIT BOOLEAN DEFAULT FALSE,
numberOfElements [1] IMPLICIT Unsigned32,
elementType [2] TypeSpecification }

ENDIF
IF (str2)
, structure [2] IMPLICIT SEQUENCE {

packed [0] IMPLICIT BOOLEAN DEFAULT FALSE,
components [1] IMPLICIT SEQUENCE OF SEQUENCE {

componentName [0] IMPLICIT Identifier OPTIONAL,
componentType [1] TypeSpecification } }

ENDIF
-- Simple Size Class
, boolean [3] IMPLICIT NULL, -- BOOLEAN

bit-string [4] IMPLICIT Integer32, -- BIT-STRING
integer [5] IMPLICIT Unsigned8, -- INTEGER
unsigned [6] IMPLICIT Unsigned8, -- UNSIGNED
floating-point [7] IMPLICIT SEQUENCE {

format-width Unsigned8, -- number of bits of
-- floating point value
-- including sign, exponent,
-- and fraction

exponent-width Unsigned8 -- size of exponent in bits
},

-- [8] is reserved
octet-string [9] IMPLICIT Integer32, -- OCTET-STRING
visible-string [10] IMPLICIT Integer32, -- VISIBLE-STRING
generalized-time [11] IMPLICIT NULL, -- GENERALIZED-TIME
binary-time [12] IMPLICIT BOOLEAN, -- BINARY-TIME
bcd [13] IMPLICIT Unsigned8, -- BCD
objId [15] IMPLICIT NULL,
...,
mMSString [16] Integer32
}

14.2.2 Type Description parameter

The structure of The Type Description parameter is given in Table 68.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved172

 Parameter Name Req/Rsp Ind/Cnf CBB

 Kind of Type
 Array
 Packed
 Number of Elements
 Type Specification
 Structure
 Packed
 List of Components
 Component Name
 Type Specification
 Simple
 Class
 Size

M
S
M
M
M
S
M
M
M
M
S
M
C

M(=)
S(=)
M(=)
M(=)
M(=)
S(=)
M(=)
M(=)
M(=)
M(=)
S(=)
M(=)
C(=)

str1
vadr

str2
vadr

valt

Table 68 - Type Description parameter

A type is described by a recursively specified parameter, the Type Specification. The Type Description parameter
describes a branching tree, called a type tree. The leaves of this tree are the simple data elements of the variable
described by the type. If a type describes a complex variable (an array or a structure), the type tree will have one
or more non-leaf nodes, each of which represents a complex type constructed from the (possibly complex) types
represented by the subordinate nodes of the type tree.

The parameters of the Type Description parameter are as follows.

14.2.2.1 Kind Of Type

The Kind Of Type parameter shall indicate the selection chosen to describe this node of the type tree. The values
for this parameter are:

ARRAY - shall indicate that the Array parameter is selected.

STRUCTURE - shall indicate that the Structure parameter is selected.

SIMPLE - shall indicate that the Simple parameter is selected.

14.2.2.2 Array

This selection for the Type Description parameter shall indicate that the node being described is a complex type
that is constructed from an ordered sequence of elements of a single type, with elements numbered from zero, the
first element, and increasing.

NOTE From a modelling perspective, an array is described by the number of sub-trees specified by the Number Of Elements
parameter, each having the type specified by the Type Specification parameter, and packing, as specified by the
Packed parameter, and each immediately subordinate to the node of the type tree that specifies the array type. A
given array element is identified by the position of its sub-tree under the array's type tree. The first array element is
identified by zero, the second by one, and so forth, with the last element identified by the value of Number Of
Elements minus one.

14.2.2.2.1 Packed

This parameter shall specify whether or not storage optimization rules are in effect for locating the data elements
of this array (and its subordinate types). When false, unless defined subordinate to a type for which this attribute
is true, storage optimization rules are not in effect. When true, storage optimization rules are in effect for the
entire sub-tree described by the array type.

For Type Description parameters that specify the type of a Named Variable object having Access Method equal to
public or that specify the type associated with an Unnamed Variable object, this parameter may be true or false,
as applicable to the variable. Otherwise, this parameter shall be false.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 173

NOTE The specific rules for locating the data elements of a storage optimized array are locally determined. These rules
should ensure the integrity of surrounding data elements in the case of partial access, if allowed.

14.2.2.2.2 Number Of Elements

This parameter shall specify the number of elements of the array.

14.2.2.2.3 Type Specification

This parameter shall specify the type description of the array elements through a recursive reference to the Type
Specification parameter.

14.2.2.3 Structure

This selection for the Type Description parameter shall specify that this node of the type tree describes a complex
type that is constructed from an ordered list of one or more components, each of which may have a distinct type.

14.2.2.3.1 Packed

This parameter shall specify whether or not storage optimization rules are in effect for locating the data elements
of this structure (and its subordinate types) or not. When false, unless defined subordinate to a type for which this
attribute is true, storage optimization rules are not in effect. When true, storage optimization rules are in effect for
the entire sub-tree described by the structure type.

For Type Description parameters that specify the type of a Named Variable object having Access Method equal to
public or that specify the type associated with an Unnamed Variable object, this parameter may be true or false,
as applicable to the variable. Otherwise, this parameter shall be false.

NOTE The specific rules for locating the data elements of a storage optimized structure are locally determined. These rules
should ensure the integrity of surrounding data elements in the case of alternate access, if allowed.

14.2.2.3.2 List Of Components

The List Of Components parameter shall describe the components of the structure. At least one component shall
be described.

14.2.2.3.2.1 Component Name

The Component Name parameter, of type Identifier, shall uniquely identify the component within the scope of the
structure (node) to which the component is an immediate subordinate. This parameter is required if this node may
be referenced by an alternate access specification. Otherwise, this parameter may be omitted.

14.2.2.3.2.2 Type Description

This parameter shall specify the type description of the structure component through a recursive reference to the
Type Specification parameter.

14.2.2.4 Simple

This selection for the Type Description parameter shall indicate that a leaf node of the type tree is being described.
Such a node shall contain the class of the data element represented by the node and, when applicable, the size (or
precision) associated with the specific instance of the class. The class and size together serve to specify the range
of possible values for the variable.

14.2.2.4.1 Class

The Class parameter of the Simple selection shall specify the class of the data element represented by the leaf
node. The value of this parameter shall be chosen from one of the following values.

a) BOOLEAN - The definition of this MMS type is as specified for the boolean type in ISO/IEC 8824-1. The
Size parameter shall be omitted.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved174

b) BIT STRING - The definition of this type is as specified for the bitstring type in ISO/IEC 8824-1. The
Size parameter shall specify the number of bits in the bit string and an indication of whether this is an
absolute number (indicating a fixed-length bitstring) or a maximum number (indicating a variable-length
bitstring).

c) INTEGER - The definition of this type is as specified for the integer type in ISO/IEC 8824-1. The Size
parameter shall specify the number of bits (assuming binary representation) required in order to allow
representation of all possible distinguished values.

d) UNSIGNED - The definition of this type is as specified for the integer type in ISO/IEC 8824-1, with the
exclusion of the negative integers. The Size parameter shall contain the number of bits (assuming binary
representation) required in order to allow representation of all possible distinguished values.

e) FLOATING POINT - This class defines a simple type with distinguished values that are the positive and
negative real numbers, including zero, and including a representation for positive and negative infinity, and
NaN (not a number). The Size parameter shall specify in bits the format width, F, and the exponent width,
E. The format width is the number of bits used to represent the floating point value including sign,
exponent, and fraction.

NOTE 1 The terms "positive infinity", "negative infinity", "NaN", "format width" and "exponent width" are defined in the
IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754 - 1985). MMS allows any number of
bits in the format and exponent. This includes, but is not limited to, the two basic formats defined in that standard.
Additional information may be found in ISO 9506-2.

f) Reserved

NOTE 2 Edition 1 of ISO/IEC 9506 defined an additional choice, the REAL representation as defined in ISO/IEC 8824-1.
That choice has been deprecated.

g) OCTET STRING - The definition of this type is as specified for the octetstring type in ISO/IEC 8824-1.
The Size parameter shall contain the number of octets in the octetstring and an indication of whether this is
an absolute number (indicating a fixed-length string) or a maximum number (indicating a variable-length
string).

h) VISIBLE STRING - The definition of this type is as specified for the VisibleString type in ISO/IEC 8824-
1. The Size parameter shall contain the number of characters in the string and an indication of whether this
is an absolute number (indicating a fixed-length string) or a maximum number (indicating a variable-length
string).

i) GENERALIZED TIME - The definition of this type is as specified for the GeneralizedTime type in
ISO/IEC 8824-1. The Size parameter shall be omitted.

j) BINARY TIME - The definition of this type is as specified for the TimeOfDay type in this part of ISO
9506. The Size parameter shall indicate whether (true) or not (false) the date is to be included in values of
the type.

k) BCD - This type shall consist of the set of distinguished values that are sequences of one or more numeric
digits (0, 1, ... 9) from some character set. The Size parameter shall indicate the absolute number of digits
of the type.

l) OBJECT IDENTIFIER - The definition of this type is as specified for the object identifier type in ISO/IEC
8824-1. The Size parameter shall be omitted.

m) MMS STRING - This type allows for a choice between an English character set (ISO/IEC 646) or a
UNICODE (ISO/IEC 10646-1) representation. The Size parameter shall contain the number of characters
in the string and an indication of whether this is an absolute number (indicating a fixed-length string) or a
maximum number (indicating a variable-length string).

14.2.2.4.2 Size

The presence (or not) of the Size parameter, as well as its meaning, is dependent upon the value of the Class
parameter, as specified above. If Class specifies a variable length string type, Size shall be a negative integer
determined by subtracting the maximum length of the string from zero.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 175

14.2.3 Type Specification Parameter

The structure of the Type Specification parameter is given in Table 69.

 Parameter Name Req/Rsp Ind/Cnf CBB

 Kind of Type
 Type Name
 Type Description

M
S
S

M(=)
S(=)
S(=)

vnam

Table 69 - Type Specification parameter

In the various variable access services, the type description of a variable or the definition of a Named Type shall
be specified by the Type Specification parameter. This parameter itself describes a procedure by which a
&typeDescription field is generated. This generation shall always be performed at the time of generation of the
MMS variable object with the effect that all references to Named Type objects are resolved at the time of
definition, and Type Descriptions never explicitly depend on Named Type objects.

NOTE As a consequence of this immediate evaluation rule, it is possible to define a VMD-specific variable in terms of a
AA-specific Named Type. For example, a variable will contain a correct Type Description attribute even if a
referenced AA-specific Named Type object is deleted because the application association disappears.

The parameters of the Type Specification parameter are as follows.

14.2.3.1 Kind Of Type

The Kind Of Type parameter shall indicate the selection that has been chosen to describe this node of the type tree.
The values for this parameter are:

TYPE-NAME - shall indicate that the Type Name parameter is selected. This value shall not occur in a response
or confirm service primitive, or in an InformationReport.indication primitive.

TYPE-DESCRIPTION - shall indicate that the TypeDescription parameter is selected.

14.2.3.2 Type Name

The Type Name selection for the Type Specification parameter shall indicate that this node of the type tree is to
inherit its definition from the &typeDescription field of the Named Type object having a &name field equal to this
parameter. (The Type Name is replaced by the value of the Named Type object's &typeDescription attribute).

14.2.3.3 Type Description

The Type Description selection for the Type Specification parameter shall indicate that this node of the type tree is
to use the explicit Type Description attribute identified.

14.3 Specification of Alternate Access

As described in 14.2, all MMS variables are typed. A variable's type describes the abstract syntax and range of
possible values of the real variable in the VMD. An alternate access description specifies an alternate view of this
type. It may be used to alter the perceived abstract syntax of the variable (as seen using MMS services) or to
restrict access to a subset of the range of possible values of the variable (partial access) or both.

Alternate access to a variable, as provided by the &accessMethod parameter of the Named Variable List object or
as provided by the Alternate Access parameter of a specific access request, provides a mapping from (to) the view
provided by the referenced MMS object to (from) the view that is desired by the access. This results in an indirect
mapping to the real variable.

In the various variable access services, alternate access is represented by the presence of the Alternate Access
parameter. It describes the derivation of the "derived type" that results from applying an alternate access to a type,

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved176

whether derived or explicitly specified by a Type Specification. This derived type determines the abstract syntax
of the Data parameter (14.4), when used to convey values associated with the alternate access.

The description of the Alternate Access parameter is based upon its relationship to an MMS variable's type.

14.3.1 Alternate Access parameter

The structure of the Alternate Access parameter is given in Table 70.

 Conformance: valt
 Parameter Name Req/Rsp Ind/Cnf CBB

 List of Alternate Access Specification
 Component Name
 Kind of Selection
 Select Alternate Access
 Access Selection
 Component
 Index
 Index Range
 Low Index
 Number of Elements
 Alternate Access
 Select Access
 Access Selection
 Component
 Index
 Index Range
 Low Index
 Number of Elements

M
U
M
S
M
S
S
S
M
M
M
S
M
S
S
S
M
M

M(=)
U(=)
M(=)
S(=)
M(=)
S(=)
S(=)
S(=)
M(=)
M(=)
M(=)
S(=)
M(=)
S(=)
S(=)
S(=)
M(=)
M(=)

str2
str1
str1

str2
str1
str1

Table 70 - Alternate Access parameter

14.3.1.1 List Of Alternate Access Selection

This parameter shall specify a list containing one or more Alternate Access Selection parameters. Each Alternate
Access Selection parameter selects a node or, in the case of an array, a range of nodes, at the next higher nesting
level of the type tree. This selection may be for the purpose of additional alternate access specification or for
specifying access to the data elements represented by the selected nodes.

If the List Of Alternate Access Selection parameter contains more than one element, the derived type resulting
from this parameter is a structure. The components of this derived type have component names and types as
determined by the selections specified in the list.

If the List Of Alternate Access Selection parameter contains exactly one element, the derived type resulting from
this parameter is determined by the selection specified for it, and the Component Name parameter shall not be
specified.

14.3.1.1.1 Component Name

This parameter shall not be present if the List Of Alternate Access Selection specifies a single selection.
Otherwise it is optional, and if present, shall specify the name of this component of the alternate access for use in
specifying alternate access to the type derived from this application of the Alternate Access parameter.

14.3.1.1.2 Kind Of Selection

This parameter shall indicate whether access or further recursion in the alternate access specification is being
specified. The possible values are:

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 177

SELECT-ALTERNATE-ACCESS - Indicates that further recursion in the alternate access specification is being
specified and that the Select Alternate Access parameter is present.

SELECT-ACCESS - Indicates that access (read or write) is being specified and that the Select Access parameter is
present.

14.3.1.1.3 Select Alternate Access

This parameter is selected for the Alternate Access Selection if one or more sub-trees at the next higher nesting
level of the type tree are to be selected for further (recursive) alternate access specification. If the current node is
an array, it shall select a single array element, a sub-range of array elements, or all array elements for further
alternate access specification. If the current node is a structure, it shall select a single component of the structure
for further alternate access specification. The parameters of Select Alternate Access are as follows.

14.3.1.1.3.1 Access Selection

This parameter shall indicate which of the selections for specifying alternate access has been taken. The possible
values are:

COMPONENT - selects a single component of the structure as identified by the Component parameter, for
alternate access.

INDEX - selects a single array element, as specified by the Index parameter, for alternate access.

INDEX-RANGE - selects an array of elements, as specified by the Index Range parameter, for alternate access.

14.3.1.1.3.2 Component

The Component parameter, of type Identifier, shall be selected if the current node of the type tree specifies a
structure and the Access Selection parameter indicates COMPONENT. This parameter selects, for further
alternate access specification, the specific structure component having Component Name equal to the Component
parameter. The selected component shall be an array or a structure. The type tree node representing the selected
structure component's type description is selected and the Alternate Access parameter is applied to that node. The
derived type that results from applying the Component selection is determined by application of the Alternate
Access parameter to the selected type tree node.

14.3.1.1.3.3 Index

The Index parameter, of type integer, shall be selected if the current node of the type tree specifies an array and the
Access Selection indicates INDEX. Otherwise this parameter shall not be selected. It selects the specific array
element for further alternate access specification. The selected component shall be an array or a structure. The
type tree node representing the selected array element's type description is selected and the Alternate Access
parameter is applied to this node. The derived type that results from applying the Index selection is determined by
application of the Alternate Access parameter to the selected node.

14.3.1.1.3.4 Index Range

The Index Range parameter shall be selected if the current node of the type tree specifies an array and the Access
Selection parameter indicates INDEX-RANGE. It selects a range of array elements (having array or structure
type) for further alternate access specification. For each element of the selected range, in order of increasing
index, the type tree node representing that element's type description is selected and the Alternate Access
parameter is applied to that node. The derived type that results from applying the Index Range selection is an
array having elements of the type determined by application of the Alternate Access parameter to each of the
selected nodes. (These elements are numbered from zero as for any other array).

14.3.1.1.3.4.1 Low Index

This integer parameter shall indicate the start of the index range. It shall be a valid index of the array. The
specified element shall be the first element of the resulting derived array type and shall be numbered zero in that
type.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved178

14.3.1.1.3.4.2 Number Of Elements

This integer parameter shall indicate the number of elements to be included in the index range, including the
element selected by Low Index. If this parameter has the value zero, all elements having index greater than or
equal to Low Index and less than or equal to the maximum index for the array are selected. If greater than zero, all
elements having index between Low Index and Low Index plus Number Of Elements minus one, inclusive are
selected. Each of the selected elements shall be defined.

14.3.1.1.3.5 Alternate Access

The Alternate Access parameter shall specify additional alternate access at the selected node (or nodes).

14.3.1.1.4 Select Access

This parameter is selected for the Alternate Access Selection if one or more sub-trees at the next higher nesting
level of the type tree are desired for access (read or write). If the current node is an array, it shall select a single
array element or a sub-range of array elements for access. If the current node is a structure, it shall select a single
component of the structure for access. The entire sub-tree (including all of its data elements) specified by the
selected node (or nodes) is accessed. The parameters of Select Access are as follows.

14.3.1.1.4.1 Access Selection

This parameter shall indicate which of the selections for specifying access has been taken. The possible values
are:

COMPONENT - selects a single component of the structure as identified by the Component parameter, for access.

INDEX - selects a single array element, as specified by the Index parameter, for access.

INDEX-RANGE - selects an array of elements, as specified by the Index Range parameter, for access.

14.3.1.1.4.2 Component

The Component parameter shall be selected if the current node of the type tree specifies a structure and the Access
Selection parameter indicates COMPONENT. Otherwise, this parameter shall not be selected. It selects a specific
structure component for access. The derived type resulting from the selection is the type of the selected structure
component.

14.3.1.1.4.3 Index

The Index parameter shall be selected if the current node of the type tree specifies an array and the Access
Selection parameter indicates INDEX. Otherwise, this parameter shall not be selected. It selects the specific array
element to be accessed. The derived type resulting from the selection is the type of the selected array element.

14.3.1.1.4.4 Index Range

The Index Range parameter shall be selected if the current node of the type tree specifies an array and the Access
Selection parameter indicates INDEX-RANGE. Otherwise, this parameter shall not be selected. It selects a range
of array elements that are to be accessed. The derived type resulting from the Index Range selection is an array
containing the selected elements, each having the type of the array element. (These elements are numbered from
zero as for any other array).

14.3.1.1.4.4.1 Low Index

This integer parameter shall indicate the start of the index range. It shall be a valid index of the array. The
specified element shall be the first element of the resulting derived array type and shall be numbered zero in that
type.

14.3.1.1.4.4.2 Number Of Elements

This integer parameter shall indicate the number of elements to be included in the index range, including the
element selected by Low Index. If this parameter has the value zero, all elements having index greater than or
equal to Low Index and less than or equal to the maximum index for the array are selected. If greater than zero, all

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 179

elements having index between Low Index and Low Index plus Number Of Elements minus one, inclusive are
selected. Each of the selected elements shall be defined.

14.4 Specification of Data Values

The MMS Read, Write and InformationReport services are used to convey the desired (Write) or current (Read
and InformationReport) value of an MMS variable or a set of MMS variables referenced by a Named Variable List
object.

For Read and InformationReport, the current value of an MMS variable is obtained by applying the V-Get
function (see 14.1.1.2), and the result is represented by the Access Result parameter.

For Write, the desired value of a variable is represented by the Data parameter. For an MMS variable, this value
updates the current state of the VMD by application of the V-Put function (see 14.1.1.2). The result of this update,
if successful, is represented by a simple confirmation. If the update fails, the result is represented by the Data
Access Error parameter.

The Access Result, Data and Data Access Error parameters are specified below.

14.4.1 Access Result parameter

The Access Result parameter is used by the Read and InformationReport services in order to inform the client of
the result of reading an MMS variable object.

The structure of this parameter is given in Table 71.

 Parameter Name Req/Rsp Ind/Cnf CBB

 Success
 Data Access Error
 Data

M
S
S

M(=)
S(=)
S(=)

Table 71 - Access Result parameter

14.4.1.1 Success

This parameter shall indicate whether (true) or not (false) the access succeeded, and shall specify the selection for
the following parameters.

14.4.1.2 Data Access Error

If the Success parameter indicates that the access failed, this parameter shall contain the reason for failure. This
parameter is described in 14.4.3.

14.4.1.3 Data

If the Success parameter indicates that the access succeeded, this parameter shall contain the value of the variable
(or constructed variable). The abstract syntax of a Data value shall be determined by the derived type specified by
the alternate access or by the variable's defined type (Named or Unnamed Variable object).

The parameters of the Data parameter are described in 14.4.2.

14.4.2 Data parameter

The Data parameter is used by the Read, Write and InformationReport services to convey the value of a variable.

The structure of the component parameters is shown in Table 72.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved180

 Parameter Name Req/Rsp Ind/Cnf CBB

 Kind of Data
 Array
 List of Data
 Structure
 List of Data
 Simple
 Class
 Value

M
S
M
S
M
S
M
M

M(=)
S(=)
M(=)
S(=)
M(=)
S(=)
M(=)
M(=)

str1

str2

Table 72 - Data parameter

This parameter is recursively defined. It shall specify a branching tree. Each node of this tree corresponds to a
node of the variable's type tree, or derived type tree after applying alternate access, see 14.2 and 14.3.

14.4.2.1 Kind Of Data

The value of the Kind Of Data parameter shall be ARRAY, STRUCTURE or SIMPLE depending upon whether
the value at the current node of the type tree is an array, a structure, or a simple data element, respectively.

14.4.2.2 Array

The Array parameter shall be selected if Kind Of Data indicates an array. It shall specify an ordered list of Data
parameters. Each element of this list provides the value of the corresponding element of the array. The elements
of the list are ordered from array element zero and to the last array element.

14.4.2.3 Structure

The Structure parameter shall specify an ordered list of Data parameters. Each element of this list shall specify the
value of the corresponding component of the structure. The elements of the list are ordered from the first
component to the last component of the structure.

14.4.2.4 Simple

The Simple parameter shall be selected when Kind Of Data indicates a simple data element. It shall specify the
class and value of a simple data element of the variable.

14.4.2.4.1 Class

This parameter shall indicate the class of data conveyed by the current value. Its possible values are BOOLEAN,
BIT STRING, INTEGER, UNSIGNED, FLOATING POINT, OCTET STRING, VISIBLE STRING,
GENERALIZED TIME, BINARY TIME, BCD, OBJECT IDENTIFIER, and MMS STRING as specified for the
Simple type of the Type Description parameter, in 14.2.2.4.1.

14.4.2.4.2 Value

This parameter shall contain the actual value of the simple data element.

14.4.3 Data Access Error parameter

The Data Access Error parameter shall indicate the reason for failure of an attempted access to a variable. The
possible values for this parameter are as follows.

OBJECT-INVALIDATED - An attempted access references a defined object that has an undefined reference
attribute. This represents a permanent error for access attempts to that object.

HARDWARE-FAULT - An attempt to access the variable has failed due to a hardware fault.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 181

TEMPORARILY-UNAVAILABLE - The requested variable is temporarily unavailable for the requested access.

Example: A VMD may disallow an attempt to write to the set-point of a control loop that has been placed in manual mode.

OBJECT-ACCESS-DENIED - The MMS client has insufficient privilege to request this operation.

OBJECT-UNDEFINED - The object with the desired name does not exist.

INVALID-ADDRESS - Reference to the unnamed variable object's specified address is invalid because the
specified format is incorrect or is out of range.

TYPE-UNSUPPORTED - An inappropriate or unsupported type is specified for a variable.

TYPE-INCONSISTENT - A type is specified that is inconsistent with the service or referenced object.

OBJECT-ATTRIBUTE-INCONSISTENT - The object is specified with inconsistent attributes.

OBJECT-ACCESS-UNSUPPORTED - The variable is not defined to allow requested access.

OBJECT-NON-EXISTENT - The variable is nonexistent.

OBJECT-VALUE-INVALID - The proposed value is not consistent with the set of allowable values for this
object.

NOTE The Data Access Error parameter does not indicate failure of a service request. Instead, it indicates failure of an
attempted valid access request. The OBJECT-INVALIDATED error indicates that the mapping represented by a
reference contained in a defined Named Variable List is no longer valid. All other values indicate failure of the
V-Get or V-Put function.

14.5 Specification of Access to Variables

This subclause describes the parameters that specify access to a variable. These include the Variable Access
Specification Parameter, the Variable Specification Parameter, and the Address parameter.

14.5.1 Variable Access Specification parameter

The structure of the Variable Access Specification parameter is shown in Table 73.

 Parameter Name Req/Rsp Ind/Cnf CBB

 Kind of Access
 List of Variable
 Variable Specification
 Alternate Access
 Variable List Name

M
S
M
U
S

M(=)
S(=)
M(=)
U(=)
S(=)

valt
vlis

Table 73 - Variable Access Specification parameter

14.5.1.1 Kind Of Access

This parameter shall indicate whether the access is specified in terms of an enumerated list of Variable
Specification and (optionally) Alternate Access parameters or in terms of a single Variable List Name parameter
giving the value of the &name field of a Named Variable List object.

14.5.1.2 List Of Variable

If Kind Of Access specifies an enumerated list, this parameter shall be specified, otherwise it shall not be
specified. If specified, this parameter shall list each variable (one or more) to be accessed, along with any
Alternate Access which shall apply. Each element of this list shall contain the following parameters.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved182

14.5.1.2.1 Variable Specification

The Variable Specification parameter shall identify the variable (at the VMD) whose value:

a) is to be read (Read request and indication service primitives);

b) is to be written (Write request and indication service primitives); or

c) has been read (InformationReport service and Read response and confirm service primitives).

The parameters of the Variable Specification parameter are specified in 14.5.2.

14.5.1.2.2 Alternate Access

This parameter shall specify the alternate access that is applicable for this service instance. If not included, full
access as specified by the variable's definition is to be used.

This parameter shall be omitted if the variable's Kind of Type is SIMPLE.

14.5.1.3 Variable List Name

If Kind Of Access specifies a named list, this parameter, of type Object Name, shall be specified, otherwise it shall
not be specified. If specified this parameter shall provide the value of the Variable List Name attribute of a Named
Variable List object at the VMD. This object shall specify a list of one or more variables that:

a) are to be read (Read request and indication service primitives);

b) are to be written (Write request and indication service primitives); or

c) have been read (Read response and confirm service primitives and InformationReport service).

14.5.2 Variable Specification parameter

The Variable Specification parameter shall specify access to a single MMS variable. The structure of its
component parameters is shown in Table 74.

 Parameter Name Req/Rsp Ind/Cnf CBB

 Kind of Variable
 Name
 Address
 Variable Description
 Address
 Type Specification

M
S
S
S
M
M

M(=)
S(=)
S(=)
S(=)
M(=)
M(=)

vnam
vadr
vadr

Table 74 - Variable Specification parameter

14.5.2.1 Kind Of Variable

This parameter shall indicate the kind of variable access that is to be (or has been) performed. Its value shall be
selected from the following:

NAMED - indicating access using a Named Variable object. If this value is selected the Name Parameter shall be
present.

UNNAMED - indicating access using an Unnamed Variable object. If this value is specified the Address
parameter shall be present.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 183

SINGLE - indicating access using a temporarily created Named Variable object whose definition is supplied in the
access request. If this value is specified the Variable Description parameter shall be present.

INVALIDATED - indicating an attempted access to an invalidated variable. This value may only occur in a
response or a confirm primitive. If this value is specified, the Name, Address, and Variable Description
parameters shall be absent.

14.5.2.2 Name

The Name parameter, of type Object Name, shall specify the &name field of a Named Variable object.

14.5.2.3 Address

The Address parameter shall specify access using the built-in type specified by an Unnamed Variable object. The
parameters of the Address parameter are given in 14.5.3.

14.5.2.4 Variable Description

The Variable Description parameter shall specify Address and Type Specification for access using a temporarily
created Named Variable object. The created object shall be deleted following the access.

14.5.2.4.1 Address

The Address parameter shall specify the address of the variable being described. It represents the base address of
the variable, as described by the Type Description parameter.

The Address parameter is described in 14.5.3.

14.5.2.4.2 Type Specification

The Type Specification parameter shall specify the variable's abstract type. The specified type shall be compatible
with the Type Description attributes of all Unnamed Variable objects that are included in the variable. The
definition of "compatible" is a local issue. (See description of the Address attribute in 14.1.3). The Type
Specification parameter is described in 14.2.

14.5.3 Address parameter

The Address parameter is used to specify an Unnamed Variable object. This International Standard provides three
forms of implementation-defined addresses, as shown by the structure of the Address parameter given in Table 75.

 Conformance: vadr
 Parameter Name Req/Rsp Ind/Cnf CBB

 Kind of Address
 Numeric Address
 Symbolic Address
 Unconstrained Address

M
S
S
S

M(=)
S(=)
S(=)
S(=)

Table 75 - Address parameter

14.5.3.1 Kind Of Address

This parameter shall indicate the kind of address contained in the parameter. Its value shall indicate whether the
address is a numeric address, a symbolic address or an unconstrained address.

NOTE This International Standard does not specify the relationship between the Kind of Address and the characteristics of a
real system. The difference between the various kinds of address, as far as this part of ISO 9506 is concerned, is
purely syntactic. An implementation may support zero or more of these kinds of addresses.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved184

14.5.3.2 Numeric Address

This parameter, of type unsigned integer, shall be selected if the Kind Of Address parameter specifies a numeric
address. Its use is appropriate for addressing variables in a system that specifies a linear address space or in which
addresses can be represented by non-negative integer values.

14.5.3.3 Symbolic Address

This parameter, of type character string, shall be selected if the Kind Of Address parameter specifies a symbolic
address. Its use is appropriate for addressing symbolically named built-in variables.

NOTE This kind of address, like the other two, specifies the &address field of an Unnamed Variable. It is semantically and
syntactically distinct from an MMS Variable Name.

14.5.3.4 Unconstrained Address

This parameter, of type octetstring, shall be selected if the Kind Of Address parameter specifies an unconstrained
address. Its use is appropriate for addressing variables in a system having an implementation-specific address
format that may not be represented as a relative address or as a symbolic address.

14.6 Read service

The read service is used by an MMS client in order to request that a MMS server return the value of one or more
variables defined at the VMD.

14.6.1 Structure

The structure of the component service primitives is shown in Table 76.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Specification with Result
 Variable Access Specification

Result(+)
 Variable Access Specification
 List of Access Result

Result(-)
 Error Type

M
M
M

M(=)
M(=)
M(=)

S
C
M

S
M

S(=)
C(=)
M(=)

S(=)
M(=)

Table 76 - Read service

14.6.1.1 Argument

This parameter shall convey the service specific parameters for the Read service request.

14.6.1.1.1 Specification With Result

This boolean parameter shall indicate whether (true) or not (false) the Variable Access Specification parameter is
requested in the Result(+) parameter of the response primitive, if issued. If true, and the response primitive
specifies success, the value of the Variable Access Specification parameter of the indication primitive shall be
returned in the Result(+) parameter of the response primitive. If false, the Variable Access Specification
parameter shall not be included.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 185

14.6.1.1.2 Variable Access Specification

This parameter shall specify the variables that are to be accessed. The Variable Access Specification parameter is
described in 14.5.1.

14.6.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

NOTE For the Read service, a successful result means that the service request was acceptable to the MMS server and that
the MMS server has attempted to determine the value of each of the variables requested by the service.

14.6.1.2.1 Variable Access Specification

This parameter shall be present if requested in the indication primitive. Otherwise, it shall be omitted. If included,
it shall contain the Variable Access Specification parameter from the indication primitive.

14.6.1.2.2 List Of Access Result

This parameter shall contain the values of the specified variables, in the order specified by the Variable Access
Specification parameter. Each element of the list shall be an Access Result, which shall either specify the value of
the real variable at the time of access, after applying the variable's type description and alternate access (if
applicable), or a reason for access error. The Access Result parameter is described in 14.4.1.

14.6.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

14.6.2 Service Procedure

14.6.2.1 Preconditions

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the VMD are satisfied for the service class = READ. If the Variable Access Specification
parameter specifies a Named Variable List object, the MMS server shall verify that all the conditions in the Access
Control List specified by the &accessControl field of the Named Variable List object are satisfied for the service
class = READ (see 9.1.3). If these conditions are not satisfied, the service request fails and a Result(-) shall be
returned.

14.6.2.2 Actions

For each item of the Variable Specification (whether included in a Named Variable List object or specified
individually) the MMS server shall:

a) verify that all the conditions in the Access Control List specified by the &accessControl field of that item
are satisfied for the service class = READ. Otherwise, the read operation fails for that component and the
Data Access Error OBJECT-ACCESS-DENIED shall be returned as the corresponding component of the
Access Result Parameter.

b) attempt to read (see V-Get in 14.1.1.2.1) the value of the specified item and return the value of this item or
an Data Access Error describing the problem with this item.

Return a Result(+) with the results of the read operations.

14.7 Write service

The Write service is used by an MMS client to request that the MMS server replace the content of one or more
variables with values supplied in the request.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved186

14.7.1 Structure

The structure of the component service primitives is shown in Table 77.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Variable Access Specification
 List of Data

Result(+)
 List of Write Result
 Success
 Data Access Error

Result(-)
 Error Type

M
M
M

M(=)
M(=)
M(=)

S
M
M
C

S
M

S(=)
M(=)
M(=)
C(=)

S(=)
M(=)

Table 77 - Write service

14.7.1.1 Argument

This parameter shall convey the service specific parameters for the Write service request.

14.7.1.1.1 Variable Access Specification

This parameter shall specify the variable or variables that are to be written. This parameter is described in detail in
14.5.1.

14.7.1.1.2 List Of Data

This parameter shall specify the values to be written to the variables specified by the Variable Access
Specification parameter. The values shall occur in this list in the order of the variables specified in the Variable
Access Specification parameter. The parameters of Data shall be determined by the variable's type description and
alternate access description, as applicable. (See 14.2 and 14.3 for details).

The Data parameter is described in 14.4.2.

14.7.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

NOTE For the Write service, a successful result means that the service request was acceptable to the MMS server and that
the MMS server has attempted to replace the value of each of the specified variables with the values supplied in the
request.

14.7.1.2.1 List Of Write Result

The List Of Write Result parameter shall return a list, specified in the order of the variables identified in the
request. This list shall indicate, for each variable, either a confirmation that the write to that variable succeeded or
a reason that the write to that variable failed.

14.7.1.2.1.1 Success

This boolean parameter shall indicate, for a given variable, whether the write succeeded (true) or not (false).

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 187

14.7.1.2.1.2 Data Access Error

If failure is indicated (Success equals false), this parameter shall provide the reason for failure. The description for
Data Access Error is found in 14.4.3.

14.7.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

14.7.2 Service Procedure

14.7.2.1 Preconditions

The MMS server shall verify the validity of the service request by inspecting the entire Variable Access
Specification and the List of Data. If the elements of the List of Data do not agree with the Variable Access
Specification in type and number of elements, a Result(-) shall be returned. The MMS server shall verify that all
the conditions in the Access Control List object referenced by the &accessControl field of the VMD are satisfied
for the service class = WRITE. If the Variable Access Specification parameter specifies a Named Variable List
object, the MMS server shall verify that all the conditions in the Access Control List specified by the
&accessControl field of the Named Variable List object are satisfied for the service class = WRITE (see 9.1.3). If
these conditions are not satisfied, the service request fails and a Result(-) shall be returned.

14.7.2.2 Actions

For each item of the Variable Specification (whether included in a Named Variable List object or specified
individually) the MMS server shall:

a) verify that all the conditions in the Access Control List specified by the &accessControl field of that item
are satisfied. If this condition is not satisfied, a Data Access Error OBJECT-ACCESS-DENIED shall be
returned as the corresponding component of the Data Access Error Parameter.

b) attempt to write (see V-Put in 14.1.1.2.2) the value of the specified variable.

The MMS server shall return, in the order specified in the Variable Access Specification parameter, a confirmation
for each item that the write succeeded or an indication of why the write failed.

14.8 InformationReport service

The InformationReport service is used by an MMS-user in order to inform the other MMS-user of the value of one
or more specified variables, as read by the issuing MMS-user.

14.8.1 Structure

The structure of the component service primitives is shown in Table 78.

 Parameter Name Req Ind CBB

Argument
 Variable Access Specification
 List of Access Result

M
M
M

M(=)
M(=)
M(=)

Table 78 - InformationReport service

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved188

14.8.1.1 Argument

This parameter shall convey the service specific parameters for the InformationReport service request.

14.8.1.1.1 Variable Access Specification

This parameter shall identify the variables for which values are being reported. This parameter is fully described
in 14.5.1.

14.8.1.1.2 List Of Access Result

This parameter shall contain the values of the specified variables, in the order specified by the Variable Access
Specification parameter. Each element of the list shall be an Access Result, which shall either specify the value of
the variable at the time of access, or a reason for failure. The Access Result parameter is described in 14.4.1.

14.8.2 Service Procedure

This International Standard does not specify a procedure for invoking, or for receiving, the InformationReport
service. The use of this service is application determined. An InformationReport.request shall not be issued if the
peer MMS-user did not indicate support of the InformationReport service in the Services Supported parameter in
the Initiate service.

This is an unconfirmed service.

NOTE 1 The choice of associations (if more than one exists) on which to send the InformationReport service request is a local
matter (that may be further specified by Companion Standards). All associations, one association, or some group
may be selected.

NOTE 2 The use of this service is functionally equivalent to an Event Notification with an Event Action of the Read service
(with a Specification With Result parameter set to true). The practical difference is that by using the Event
Notification method, the conditions under which the service is used are directly visible (and modifiable) using MMS
services, while by using the InformationReport service, the conditions are a local matter and cannot be determined or
changed by the remote MMS user.

14.9 GetVariableAccessAttributes service

The GetVariableAccessAttributes service is used by an MMS client in order to request that the MMS server return
the attributes of a Named Variable or an Unnamed Variable object defined at the VMD.

14.9.1 Structure

The structure of the component service primitives is shown in Table 79.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 189

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Kind of Variable
 Name
 Address

Result(+)
 MMS Deletable
 Address
 Type Description
 Access Control List
 Meaning

Result(-)
 Error Type

M
M
S
S

M(=)
M(=)
S(=)
S(=)

S
M
C
M
C
C

S
M

S(=)
M(=)
C(=)
M(=)
C(=)
C(=)

S(=)
M(=)

vnam
vadr

vadr

aco
sem

Table 79 - GetVariableAccessAttributes service

14.9.1.1 Argument

This parameter shall convey the service specific parameters for the GetVariableAccessAttributes service request.

14.9.1.1.1 Kind Of Variable

This parameter shall equal NAMED or UNNAMED depending upon whether the request is for a Named Variable
object or an Unnamed Variable object, respectively.

14.9.1.1.2 Name

If Kind Of Variable is equal to NAMED, this parameter, of type Object Name, shall specify the &name field of the
desired Named Variable object.

14.9.1.1.3 Address

If Kind Of Variable is equal to UNNAMED, this parameter shall specify the &address field of the desired
Unnamed Variable object.

14.9.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

14.9.1.2.1 MMS Deletable

Subclause 9.1.4 specifies the value to be returned by this parameter.

14.9.1.2.2 Address

If the vadr parameter conformance building block has been negotiated for the current application association, and
if the referenced object is a Named Variable object with &accessMethod field equal to public, this parameter
shall be the &address attribute of the Named Variable object. Otherwise, this parameter shall be omitted.

14.9.1.2.3 Type Description

This parameter shall be the &typeDescription attribute of the referenced Named Variable or Unnamed Variable
object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved190

14.9.1.2.4 Access Control List

This parameter, of type Identifier, shall be the value of &accessControl field. This field indicates the Access
Control List object that controls access to this Variable. This parameter shall not appear unless the aco parameter
CBB has been negotiated.

14.9.1.2.5 Meaning

This parameter, of type character string, shall be the value of the &meaning field, if present. This parameter shall
not occur unless the Kind of Variable parameter specifies NAMED, and unless the sem CBB has been negotiated.

14.9.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

14.9.2 Service Procedure

The MMS server shall return the attributes or derived type description, as applicable of the referenced object.

14.10 DefineNamedVariable service

The DefineNamedVariable service is used by an MMS client to request that the MMS server create a Named
Variable object that describes a mapping to a real variable in the VMD.

NOTE The ability to define a Named Variable object, using MMS services, has been included in this part of ISO 9506 in
order to support those systems that, due to simplicity or age, do not provide for local definition of Named Variable
objects.

14.10.1 Structure

The structure of the component service primitives is shown in Table 80.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Variable Name
 Address
 Type Specification

Result(+)

Result(-)
 Error Type

M
M
M
U

M(=)
M(=)
M(=)
U(=)

S

S
M

S(=)

S(=)
M(=)

Table 80 - DefineNamedVariable service

14.10.1.1 Argument

This parameter shall convey the service specific parameters for the DefineNamedVariable service request.

14.10.1.1.1 Variable Name

The Variable Name parameter, of type Object Name, shall specify the name that shall uniquely identify the Named
Variable object at the VMD. This name shall be unique among Named Variable objects having the specified
scope.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 191

14.10.1.1.2 Address

This parameter shall specify the &address field of an Unnamed Variable object. It shall specify the base or
starting address for the variable described by the Type Specification parameter. If multiple addresses are required
to represent this type, they shall be assigned to contiguous locations of the VMD. The Address parameter is
described in 14.5.3.

14.10.1.1.3 Type Specification

This parameter is optional. When specified, it defines the &typeDescription field of the Named Variable object
that is being defined. If not specified, the Named Variable object inherits the Unnamed Variable object's
&typeDescription field. The Type Specification parameter is described in 14.2.3.

The simple data elements of the type described by the Type Specification shall be compatible with the
&typeDescription fields of the Unnamed Variable objects that are spanned by this definition.

NOTE The criteria for deciding that types are compatible are local issues. See description of Address attribute in 14.1.3.

14.10.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

14.10.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

14.10.2 Service Procedure

14.10.2.1 Preconditions

The MMS server shall verify that no Named Variable object exists that has the same &name field as the Variable
Name parameter of the service request. The MMS server shall verify that all the conditions in the Access Control
List object referenced by the &accessControl field of the VMD are satisfied for the service class = LOAD. If
these conditions are not satisfied, the service request fails and a Result(-) shall be returned.

14.10.2.2 Actions

The MMS server shall create a Named Variable object and shall initialize its fields as described below.

a) The &name field shall be initialized to the Variable Name parameter.

b) The &accessControl field shall indicate an Access Control List object that will report the value of MMS
Deletable as true (see 9.1.4). The predefined symbol 'M_Deletable' (see 25.3.2.1) may be used for this
purpose.

c) A reference to this newly created Named Variable object shall be added to the &NamedVariables field of
the Access Control List object referenced by the &accessControl field of the newly created Named
Variable object.

d) If the Type Specification parameter is present in the indication primitive, the Named Variable object's
&typeDescription field shall be initialized to the value of the Type Specification parameter, with all Type
Name parameters, if any, replaced by the &typeDescription field of the Named Type object having &name
field equal to the value of the Type Name parameter.

e) If the Type Specification parameter is absent from the indication primitive, the Named Variable object's
&typeDescription field shall be initialized to equal the &typeDescription field of the Unnamed Variable
object having &address field equal to the specified Address parameter.

f) The &accessMethod field shall be initialized to public.

g) The &address field shall be initialized to the value of the Address parameter.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved192

h) If the Type Specification parameter is present in the indication primitive, and if the Type Name choice has
been specified for this parameter, the &meaning field, if present, shall be initialized as follows:

1) if the Scope of the name of the Named Type is VMD-specific, to the value of the &name field of
the Named Type;

2) if the Scope of the name of the Named Type is Domain-specific, the Scope of the name of the
Named Variable is Domain-specific, and the same Domain is referenced by both objects, to the
value of the &name field of the Named Type;

3) if the Scope of the name of the Named Type is AA-specific and the Scope of the name of the
Named Variable is AA-specific, to the value of the &name field of the Named Type;

4) otherwise, to a null string.

A Result(+) shall be issued. This response shall contain no service-specific information.

14.11 DeleteVariableAccess service

The DeleteVariableAccess service is used by an MMS client to request that the MMS server delete one or more
Named Variable objects for which deletion is permitted.

14.11.1 Structure

The structure of the component service primitives is shown in Table 81.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Scope of Delete
 List of Variable List Name
 Domain Name

Result(+)
 Number Matched
 Number Deleted

Result(-)
 Error Type
 Number Deleted

M
M
C
C

M(=)
M(=)
C(=)
C(=)

S
M
M

S
M
M

S(=)
M(=)
M(=)

S(=)
M(=)
M(=)

Table 81 - DeleteVariableAccess service

14.11.1.1 Argument

This parameter shall convey the service specific parameters for the DeleteVariableAccess service request.

14.11.1.1.1 Scope of Delete

The Scope of Delete parameter shall specify the extent of delete to be attempted. Possible values for this
parameter, and their meaning, are as follows:

SPECIFIC - Specifies that the specific Named Variable objects having &name fields equal to the Name parameters
of the List of Name parameter for which deletion is permitted are to be deleted.

AA-SPECIFIC - Specifies that all Named Variable objects within the scope of the current application association
for which deletion is permitted are to be deleted.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 193

DOMAIN - Specifies that all Named Variable objects within the scope of the specified Domain for which deletion
is permitted are to be deleted.

VMD - Specifies that all Named Variable objects having VMD scope for which deletion is permitted are to be
deleted.

14.11.1.1.2 List Of Name

This parameter shall be specified if Scope of Delete is SPECIFIC. Otherwise, it shall be omitted. If included, it
shall contain a list of one or more Name parameters, of type Object Name, each specifying the &name attribute of
a Named Variable object that is to be deleted.

14.11.1.1.3 Domain Name

This parameter, of type Identifier, shall be specified if Scope of Delete is equal to DOMAIN. Otherwise, it shall
be omitted. It provides the name of the Domain for which all Named Variable objects for which deletion is
permitted are to be deleted.

14.11.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

14.11.1.2.1 Number Matched

This parameter, of type integer, shall indicate the number of Named Variable objects that matched the name
specification in the service request.

14.11.1.2.2 Number Deleted

This parameter, of type integer, shall indicate the number of Named Variable objects that were deleted as a result
of executing the service procedure.

NOTE The difference between the Number Matched and Number Deleted parameters indicate the number of objects that
were not deleted, either because the conditions specified in the referenced Access Control List object(s) were not
satisfied for Service Class = DELETE, or for other reasons.

14.11.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, shall provide the reason for failure. When failure is indicated, the following parameter shall
be returned.

14.11.1.3.1 Number Deleted

This parameter, of type integer, shall indicate the number of Named Variable objects that were deleted as a result
of executing the service procedure.

14.11.2 Service Procedure

14.11.2.1 Preconditions

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&aAccessControl field of the VMD are satisfied for the service class = DELETE. If this condition is not satisfied,
the service request fails and a Result(-) shall be returned.

14.11.2.2 Actions

The MMS server shall prepare a list of objects to be deleted. If SPECIFIC was selected as the Scope of Delete
parameter, the List of Name parameter identifies the objects to be deleted. Otherwise, all Named Variable objects
of the indicated scope are to be deleted. For each object on the list, the conditions in the Access Control List
specified by the &accessControl field of the object to be deleted shall be evaluated. If the conditions are satisfied,
and if the deletion is otherwise feasible, the MMS server shall perform the following steps.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved194

a) The MMS server shall remove the reference to this object from the &NamedVariables field of the Access
Control List object referenced by the &accessControl field of this object.

b) If a deleted object is referenced by the &namedItem field of one or more Named Variable List objects,
each deleted object shall be removed from the corresponding &namedItem field.

c) The MMS server shall delete the object.

If the conditions are not satisfied, do not delete this object.

After all objects of the specified scope have been deleted, a Result(+) shall be issued with the values assigned to
the Number Matched and Number Deleted parameters.

If an error occurs in the deletion of any of the specified objects, a Result(-) shall be issued with the Number
Deleted parameter indicating the number of objects that were deleted. Failure to delete an object because the
conditions specified in the referenced Access Control List object were not satisfied shall not be deemed an error.

14.12 DefineNamedVariableList service

The DefineNamedVariableList service is used by an MMS client to request that the MMS server create a Named
Variable List object.

14.12.1 Structure

The structure of the component service primitives is shown in Table 82.

 Parameter Name Req Ind Rep Cnf CBB

 Argument
 Variable List Name
 List of Variable
 Variable Specification
 Alternate Accesss

 Result(+)

 Result(-)
 Error Type

M
M
M
M
U

M(=)
M(=)
M(=)
M(=)
U(=)

S

S
M

S(=)

S(=)
M(=)

valt

Table 82 - DefineNamedVariableList service

14.12.1.1 Argument

This parameter shall convey the service specific parameters for the DefineNamedVariableList service request.

14.12.1.1.1 Variable List Name

The Variable List Name parameter, of type Object Name, shall specify the name that shall uniquely identify the
Named Variable List object at the VMD.

14.12.1.1.2 List Of Variable

The List Of Variable parameter shall specify a list of one or more variables that are to be accessed using the
Named Variable List. Each element of this list shall specify the following parameters.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 195

14.12.1.1.2.1 Variable Specification

This parameter shall specify a variable that is to be accessed by this element of the list. The Variable Specification
parameter is described in 14.5.2.

14.12.1.1.2.2 Alternate Access

This optional parameter, if included, shall specify Alternate Access that is to apply when the variable specified by
this element of the list is accessed. If omitted, full access is specified. Alternate Access is described in 14.3.

14.12.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

14.12.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

14.12.2 Service Procedure

14.12.2.1 Preconditions

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the VMD are satisfied for the service class = LOAD. If this condition is not satisfied, the
service request fails and a Result(-) shall be returned.

14.12.2.2 Actions

The MMS server shall create a Named Variable List object and shall initialize its attributes as follows:

a) The &name field shall be initialized to equal the Variable List Name parameter.

b) The &accessControl field shall indicate an Access Control List object that will report the value of MMS
Deletable as true (see 9.1.4). The predefined symbol 'M_Deletable' (see 25.3.2.1) may be used for this
purpose.

c) A reference to this newly created Named Variable List object shall be added to the &NamedVariableLists
field of the Access Control List object referenced by the &accessControl field of the newly created Named
Variable List object.

d) The &listOfVariables field shall be initialized to identify variable objects and access descriptions for those
variable objects. The entries shall be maintained in the Named Variable List object in the order that they
occur in the List Of Variable parameter. Each entry shall correspond to an element of the List Of Variable
parameter and shall have its attributes initialized as specified below.

1) If the Kind Of Variable parameter of the Variable Specification parameter is NAMED, a
&namedItem field shall be created, indicating the Named Variable identified in the Variable
Specification parameter. If the Alternate Access parameter is present for this item, the
&accessMethod field shall be set to this parameter; otherwise this field shall be omitted.

2) If the Kind Of Variable parameter of the Variable Specification parameter is UNNAMED, an
&unnamedItem field shall be created, indicating the Unnamed Variable identified in the Variable
Specification parameter. If the Alternate Access parameter is present for this item, the
&accessMethod field shall be set to this parameter; otherwise this field shall be omitted.

3) If the Kind of Variable parameter of the Variable Specification parameter is SINGLE, a Named
Variable object shall be created with its &name field equal to UNDEFINED, its &typeDescription
field equal to the type specified by the Variable Description parameter's Type Specification, its
&accessMethod field equal to public, and its &address field equal to the Address of the Variable
Specification parameter. Its &accessControl field shall be set to reference an Access Control List
object that will report the value of MMS Deletable as true (see 9.1.4). The predefined symbol

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved196

'M_Deletable' (see 25.3.2.1) may be used for this purpose. If the Alternate Access parameter is
present for this item, the &accessMethod field shall be set to this parameter; otherwise this field
shall be omitted.

e) A Result(+) shall be issued.

14.13 GetNamedVariableListAttributes service

The GetNamedVariableListAttributes service is used by an MMS client to request that an MMS server return the
attributes of a Named Variable List object defined at the VMD.

14.13.1 Structure

The structure of the component service primitives is shown in Table 83.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Variable List Name

Result(+)
 MMS Deletable
 List of Variable
 Variable Specification
 Alternate Access
 Access Control List

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M
M
C
C

S
M

S(=)
M(=)
M(=)
M(=)
C(=)
C(=)

S(=)
M(=)

valt
aco

Table 83 - GetNamedVariableListAttributes service

14.13.1.1 Argument

This parameter shall convey the service specific parameters for the GetNamedVariableListAttributes service
request.

14.13.1.1.1 Variable List Name

The Variable List Name parameter, of type Object Name, shall specify the &name field of the Named Variable
List object whose attributes are desired.

14.13.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

14.13.1.2.1 MMS Deletable

This parameter shall indicate whether (true) or not (false) the Named Variable List object is deletable using the
DeleteNamedVariableList service. Subclause 9.1.4 specifies the value to be returned by this parameter.

14.13.1.2.2 List Of Variable

The List Of Variable parameter shall be the &listOfVariable field of the Named Variable List object. It shall
specify an ordered list of one or more access descriptions, each specifying the Variable Specification and
(conditionally) Alternate Access parameters that specify access to an MMS variable object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 197

14.13.1.2.2.1 Variable Specification

The Variable Specification parameter shall specify the variable that is accessed by this element of the list.
Variable Specification is described in 14.5.2.

14.13.1.2.2.2 Alternate Access

This parameter shall be omitted if full access to the referenced variable is provided. Otherwise, it shall specify the
value of the Access Description attribute of this list element. Alternate Access is described in 14.3.

14.13.1.3 Access Control List

This parameter, of type Identifier, shall indicate the name of the Access Control List object that controls access to
this Named Variable List object. This parameter shall not appear unless the aco parameter CBB has been
negotiated.

14.13.1.4 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

14.13.2 Service Procedure

The MMS server shall return the attributes of the Named Variable List object.

Entries shall be placed in the List Of Variable parameter in the order specified in the &listOfVariables field of the
Named Variable List object. Each entry shall correspond to an element of the Named Variable List object's
&listOfVariable field and shall have its parameters specified as follows:

a) The parameters of the Variable Specification parameter shall be determined by the choice made of item
type within the &listOfVariables field.

1) If the choice is &namedItem and the referenced Named Variable object's &name field does not
have the value UNDEFINED, the Kind Of Variable parameter shall be NAMED and Name shall
contain the &name field of the referenced object.

2) If the choice is &unnamedItem, the Kind Of Variable parameter shall be UNNAMED, and Address
shall contain the &address field of the referenced object.

3) If the choice is &namedItem and the referenced Named Variable object's &name field is equal to
UNDEFINED, the Kind Of Variable parameter shall be SINGLE and Variable Description shall
contain Address equal to the &address field of the referenced Named Variable object and Type
Specification equal to the referenced Named Variable object's &typeDescription field.

b) The Alternate Access parameter shall be omitted if the &accessMethod attribute is missing. Otherwise, it
shall be equal to the &accessMethod attribute.

A Result(+) shall be issued.

14.14 DeleteNamedVariableList service

The DeleteNamedVariableList service is used by an MMS client to request that an MMS server delete one or more
MMS-defined Named Variable List objects at the VMD whose deletion is allowed.

14.14.1 Structure

The structure of the component service primitives is shown in Table 84.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved198

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Scope of Delete
 List of Variable List Name
 Domain Name

Result(+)
 Number Matched
 Number Deleted

Result(-)
 Error Type
 Number Deleted

M
M
C
C

M(=)
M(=)
C(=)
C(=)

S
M
M

S
M
M

S(=)
M(=)
M(=)

S(=)
M(=)
M(=)

Table 84 - DeleteNamedVariableList service

14.14.1.1 Argument

This parameter shall convey the service specific parameters for the DeleteNamedVariableList service request.

14.14.1.1.1 Scope of Delete

The Scope of Delete parameter shall specify the extent of delete to be attempted. Possible values for this
parameter, and their meaning, are as follows:

SPECIFIC - Specifies that the specific Named Variable List objects having &name fields equal to the &name field
of the Named Variable List objects indicated by the List Of Variable List Name parameter are to be deleted.

AA-SPECIFIC - Specifies that all MMS-defined Named Variable List objects within the scope of the current
application association are to be deleted.

DOMAIN - Specifies that all MMS-defined Named Variable List objects within the scope of the specified Domain
are to be deleted.

VMD - Specifies that all MMS-defined Named Variable List objects having VMD scope are to be deleted.

14.14.1.1.2 List Of Variable List Name

This parameter shall be specified if Scope of Delete is SPECIFIC. Otherwise, it shall be omitted. If included, it
shall contain a list of one or more Variable List Name parameters, of type Object Name, each specifying the value
of the &name attribute of a specific Named Variable List object that is to be deleted.

14.14.1.1.3 Domain Name

This parameter, of type Identifier, shall be specified if Scope of Delete is equal to DOMAIN. Otherwise, it shall
be omitted. It provides the name of the Domain for which all Named Variable List objects are to be deleted.

14.14.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 199

14.14.1.2.1 Number Matched

This parameter, of type integer, shall indicate the number of Named Variable List objects that matched the name
specification in the service request.

14.14.1.2.2 Number Deleted

This parameter, of type integer, shall indicate the number of Named Variable List objects that were deleted as a
result of executing the service procedure.

14.14.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, shall provide the reason for failure. When failure is indicated, the following parameter shall
be returned.

14.14.1.3.1 Number Deleted

This parameter, of type integer, shall indicate the number of Named Variable List objects that were deleted as a
result of executing the service procedure.

14.14.2 Service Procedure

14.14.2.1 Preconditions

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the VMD are satisfied for the service class = DELETE. If this condition is not satisfied,
the service request fails and a Result(-) shall be returned.

14.14.2.2 Actions

The MMS server shall prepare a list of objects to be deleted. If SPECIFIC was selected as the Scope of Delete
parameter, the List of Variable List Name parameter identifies the objects to be deleted. Otherwise, all Named
Variable List objects of the indicated scope are to be deleted. For each object on the list, the conditions in the
Access Control List specified by the &accessControl field of the object to be deleted shall be evaluated. If the
conditions are satisfied, and if the deletion is otherwise feasible, the MMS server shall perform the following
steps.

a) The MMS server shall remove the reference to this object from the &NamedVariableLists field of the
Access Control List object referenced by the &accessControl field of this object.

b) If a deleted Named Variable List object references a Named Variable object having its &name field equal
to UNDEFINED, the referenced object shall also be deleted. Any such referenced objects deleted shall not
be included in the count of the number matched or the number deleted.

c) The MMS server shall delete the Named Variable List object.

If the conditions are not satisfied, do not delete this object.

After all Named Variable List objects of the specified scope have been deleted, a Result(+) shall be issued with the
values assigned to the Number Matched and Number Deleted parameters.

If an error occurs in the deletion of any of the specified objects, a Result(-) shall be issued with the Number
Deleted parameter indicating the number of objects that were deleted. Failure to delete an object for which the
conditions in the Access Control List object referenced by the &accessControl field are not satisfied for service
class = DELETE shall not be deemed an error.

14.15 DefineNamedType service

The DefineNamedType service is used by an MMS client to request that an MMS server store a type description
for use in subsequent definition of Named Variable or Named Type (or both) objects at the VMD.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved200

14.15.1 Structure

The structure of the component service primitives is shown in Table 85.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Type Name
 Type Specification

Result(+)

Result(-)
 Error Type

M
M
M

M(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 85 - DefineNamedType service

14.15.1.1 Argument

This parameter shall convey the service specific parameters for the DefineNamedType service request.

14.15.1.1.1 Type Name

The Type Name parameter, of type Object Name, shall specify the name that shall uniquely identify the Named
Type object at the VMD.

14.15.1.1.2 Type Specification

This parameter shall specify the value of the abstract type that shall be associated with the Type Name. The Type
Specification parameter is described in 14.2.3.

14.15.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

14.15.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

14.15.2 Service Procedure

14.15.2.1 Preconditions

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the VMD are satisfied for the service class = LOAD. If this condition is not satisfied, the
service request fails and a Result(-) shall be returned.

14.15.2.2 Actions

The MMS server shall create a Named Type object and shall initialize its fields as described below.

a) The &name field shall be initialized to equal the Type Name parameter.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 201

b) The &accessControl field shall indicate an Access Control List object that will report the value of MMS
Deletable as true (see 9.1.4). The predefined symbol 'M_Deletable' (see 25.3.2.1) may be used for this
purpose.

c) A reference to this newly created Named Type object shall be added to the &NamedTypes field of the
Access Control List object referenced by the &accessControl field of the newly created Named Type
object.

d) The Named Type object's &typeDescription field shall be initialized to the value of the Type Specification
parameter, with all Type Name parameters, if any, replaced by the &typeDescription field of the Named
Type object having &name field equal to the value of the Type Name parameter.

e) If the Type Specification parameter is present in the indication primitive, and if the Type Name choice has
been specified for this parameter, the &meaning field shall be initialized as follows. In this description the
defined Named Type refers to the Named Type specified by the Type Name parameter of the service
indication. The defining Named Type refers to the Named Type choice of the Type Specification
parameter. The &meaning field of the defined Named Type shall be initialized as follows:

1) if the Scope of the name of the defining Named Type is VMD-specific, to the value of the &name
field of the defining Named Type;

2) if the Scope of the name of the defining Named Type is Domain-specific, the Scope of the name of
the defined Named Type is Domain-specific, and the same Domain is referenced by both objects, to
the value of the &name field of the defining Named Type;

3) if the Scope of the name of the defining Named Type is AA-specific and the Scope of the name of
the defined Named Variable is AA-specific, to the value of the &name field of the Named Type;

4) otherwise, to a null string.

A Result(+) shall be issued. This response shall contain no service-specific information.

14.16 GetNamedTypeAttributes service

The GetNamedTypeAttributes service is used by an MMS client to request that an MMS server return the
attributes of a Named Type object.

14.16.1 Structure

The structure of the component service primitives is shown in Table 86.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Type Name

Result(+)
 MMS Deletable
 Type Description
 Access Control List
 Meaning

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M
C
C

S
M

S(=)
M(=)
M(=)
C(=)
C(-)

S(=)
M(=)

aco
sem

Table 86 - GetNamedTypeAttributes service

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved202

14.16.1.1 Argument

This parameter shall convey the service specific parameters for the GetNamedTypeAttributes service request.

14.16.1.1.1 Type Name

The Type Name parameter, of type Object Name, shall specify the value of the &name field of the Named Type
object whose attributes are desired.

14.16.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

14.16.1.2.1 MMS Deletable

This parameter shall indicate whether (true) or not (false) the Named Type object may be deleted using the
DeleteNamedType service. Subclause 9.1.4 specifies the value to be returned by this parameter.

14.16.1.2.2 Type Description

This parameter shall contain the value of the &typeDescription field of the Named Type object. The Type
Description parameter is described in 14.2.2.

14.16.1.2.3 Access Control List

This parameter, of type Identifier, shall indicate the name of the Access Control List object that controls access to
this Named Type. This parameter shall not appear unless the aco parameter CBB has been negotiated.

14.16.1.2.4 Meaning

This parameter, of type character string, shall be the value of the &meaning field, if present. This parameter shall
not occur unless the sem CBB has been negotiated.

14.16.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

14.16.2 Service Procedure

The MMS server shall return the parameters associated with this Named Type object. Subclause 9.1.4 specifies
the value to be returned by the MMS Deletable parameter.

14.17 DeleteNamedType service

The DeleteNamedType service is provided in order to allow an MMS client to request that an MMS server delete
one or more Named Type objects.

14.17.1 Structure

The structure of the component service primitives is shown in Table 87.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 203

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Scope of Delete
 List Of Type Name
 Domain Name

Result(+)
 Number Matched
 Number Deleted

Result(-)
 Error Type
 Number Deleted

M
M
C
C

M(=)
M(=)
C(=)
C(=)

S
M
M

S
M
M

S(=)
M(=)
M(=)

S(=)
M(=)
M(=)

Table 87 - DeleteNamedType service

14.17.1.1 Argument

This parameter shall convey the service specific parameters for the DeleteNamedType service request.

14.17.1.1.1 Scope of Delete

The Scope of Delete parameter shall specify the extent of delete to be attempted. Possible values for this
parameter, and their meaning, are as follows:

SPECIFIC - Specifies that the specific Named Type objects having &name field equal to the Type Name
parameters of the List Of Type Name parameter are to be deleted.

AA-SPECIFIC - Specifies that all Named Type objects within the scope of the current application association are
to be deleted.

DOMAIN - Specifies that all Named Type objects within the scope of the specified Domain are to be deleted.

VMD - Specifies that all Named Type objects having VMD scope are to be deleted.

14.17.1.1.2 List Of Type Name

This parameter shall be specified if Scope of Delete is SPECIFIC. Otherwise, it shall be omitted. If included, it
shall contain a list of one or more Type Name parameters, of type Object Name, each specifying the value of the
Type Name attribute of a specific Named Type object that to be deleted.

14.17.1.1.3 Domain Name

This parameter, of type Identifier, shall be specified if Scope of Delete is equal to DOMAIN. Otherwise, it shall
be omitted. It shall be the name of the Domain for which all Named Type objects are to be deleted.

14.17.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

14.17.1.2.1 Number Matched

This parameter, of type integer, shall indicate the number of Named Type objects that matched the name
specification in the service request.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved204

14.17.1.2.2 Number Deleted

This parameter, of type integer, shall indicate the number of Named Type objects that were deleted as a result of
executing the service procedure.

14.17.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, shall provide the reason for failure. When failure is indicated, the following parameter shall
be returned.

14.17.1.3.1 Number Deleted

This parameter, of type integer, shall indicate the number of Named Type objects that were deleted as a result of
executing the service procedure.

14.17.2 Service Procedure

14.17.2.1 Preconditions

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the VMD are satisfied for the service class = DELETE. If this condition is not satisfied,
the service request fails and a Result(-) shall be returned.

14.17.2.2 Actions

The MMS server shall prepare a list of objects to be deleted. If SPECIFIC was selected as the Scope of Delete
parameter, the List of Name parameter identifies the objects to be deleted. Otherwise, all Named Type objects of
the indicated scope are to be deleted. For each object on the list, the conditions in the Access Control List
specified by the &accessControl field of the object to be deleted shall be evaluated. If the conditions are satisfied,
and if the deletion is otherwise feasible, the MMS server shall perform the following steps.

a) The MMS server shall remove the reference to this Named Type object from the &NamedTypes field of
the Access Control List object referenced by the &accessControl field of this Named Type object.

b) The MMS server shall delete the Named Type object.

If the conditions are not satisfied, do not delete this object.

After all Named Type objects of the specified scope have been deleted, a Result(+) shall be issued with the values
assigned to the Number Matched and Number Deleted parameters.

If an error occurs in the deletion of any of the specified objects, a Result(-) shall be issued with the Number
Deleted parameter indicating the number of objects that were deleted. Failure to delete an object because the
conditions specified in the referenced Access Control List object were not satisfied shall not be deemed an error.

14.18 Conformance

The Variable Access Services define parameter conformance requirements for the MMS server. These
requirements are described below.

14.18.1 Static Conformance

The static conformance statement for an implementation shall state the level of support that it provides, if any, for
uninterruptibility of access to variables described by Named Variable and Unnamed Variable objects.
Uninterruptibility of access is defined to mean that:

a) read access is performed with the guarantee that the variable is not changing while being read;

b) write access is performed with the guarantee that all potential concurrent access to the variable (whether
local or remote, for read or for write) is inhibited during the write.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 205

If an implementation supports uninterruptibility of access for a subset of its variables, the static conformance
statement shall specify the requirements associated with this subset, and shall specify whether or not variables
failing to meet these requirements are accessible using MMS services.

In addition to the required statement concerning uninterruptibility of access, an implementation supporting vadr
shall specify its address format or formats, and shall specify the relationship between an address and an inherent
type associated with that address.

14.19 Guidance To Implementors

Subclause 14.19 and its subclauses are informative.

The MMS Variable Access services are intended to serve the needs of a wide range of systems, from the most
simple to the highly complex. These services are also intended to serve the needs of devices designed with this
International Standard in mind, as well as the needs of devices that, due to age or simplicity, were not designed
with this International Standard in mind.

Due to this wide range of requirements, not all of the Variable Access services are appropriate for every VMD. It
is expected that there will be three primary environments for implementation of MMS Variable access services.
They have been classified as follows:

a) vnam-only - serving the needs of systems designed with MMS in mind;

b) vadr-only - serving the needs of simple systems and of systems that, due to age or other consideration, do
not justify vnam support;

c) vnam-with-vadr - serving the needs of systems that were not designed with MMS in mind, and for which
it is justified, for whatever reason, to bring as much as possible of the vnam-only functionality to the
device.

NOTE Other environments are possible and are not prohibited.

The conformance issues associated with these three environments are described below.

14.19.1 VNAM-only

A vnam-only system is one that has been designed with MMS in mind. It directly supports the Variable Access
model through the local definition of MMS Named Variable objects by the serving application process in which
the VMD exists. These objects have Access Method attribute not equal to public. Unnamed Variable objects
are not supported, though the access method associated with a Named Variable object may, in fact, make use of
address information.

From a parameter conformance stand-point, this system will support vnam. It is likely to support both str1 and
str2 (and thus nest greater than zero) and it may also support valt.

14.19.2 VADR-only

The vadr-only system is one that is either quite simple, thus not justifying vnam-only, or it has not been designed
with MMS in mind and does not justify the complexity of the vnam-with-vadr environment. This system
supports Unnamed Variable objects only. From a parameter conformance stand-point, this system will support
vadr. It is unlikely to support either str1 or str2 (and thus nest will be equal to zero and valt will not be
supported). vnam is not supported.

NOTE Note that while no variable names are supported in this system, names for other objects, such as Domains and
Program Invocations, may still be supported.

14.19.3 VNAM-with-VADR

This environment encompasses all MMS-capable systems that implement the Variable Access services and that are
not included in the previous environments. The goal of this environment should be to present a vnam-only view
to most clients.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved206

15 Data Exchange Management Services

This clause provides an object model for the following object:

DATA-EXCHANGE

This clause specifies the following services:

ExchangeData
GetDataExchangeAttributes

The Data Exchange management services provide facilities that allow an MMS client to invoke a procedure at the
VMD. This remote procedure call is modelled as an exchange of data between two MMS users. Subclause 15.1
describes the MMS Model for Data Exchange. The ExchangeData service is described in 15.2 and the
GetDataExchangeAttributes service is described in 15.3. These services are intended to provide functions not
available through use of other MMS services, and shall not be used to circumvent the spirit or intent of those
services.

15.1 The Data Exchange management model

This clause defines the MMS Model for the Data Exchange object and the related Data Exchange function. A data
exchange object is an abstract element of a VMD that is capable of invoking (when requested) a real procedure.
This procedure may require data as input and may produce data as output.

NOTE Implementation of Data Exchange on a real device may take different forms. One form could be realisation as a
remote procedure call. Another form could be message function blocks on a programmable device. These may be
used for synchronization of processing by having a logical thread of execution stalled waiting for receipt of the Data
Exchange message.

15.1.1 D-Exchange Function

The D-Exchange function represents the processing of a data exchange service at the VMD. Parameters of the D-
Exchange function are the state of the VMD and the values of the input parameters. The relationship between the
real procedure and the Data Exchange object that is used to invoke it is modelled by the D-Exchange function. If
the processing is successful, the result is a set of values for the output parameters.

15.1.2 The Data Exchange object model

 DATA-EXCHANGE ::= CLASS {
&name Identifier,

 -- this field shall be unique among all Data Exchange objects within the VMD
&inUse BOOLEAN,
&accessControl Identifier,
&request SEQUENCE OF TypeDescription,
&response SEQUENCE OF TypeDescription,
&linked BOOLEAN,

 -- The following attribute shall appear if an only if
 -- the value of &linked is true.

&programInvocation Identifier
}

15.1.2.1 &name

The &name field uniquely identifies the Data Exchange object within the VMD.

15.1.2.2 &inUse

The &inUse field indicates whether (true) or not (false) the Data Exchange object is performing the D-Exchange
function.

15.1.2.3 &accessControl

The &accessControl field identifies an Access Control List object that provides conditions under which this Data
Exchange object may be written or have its access control changed.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 207

15.1.2.4 &request

The &request field specifies the data types of input data (if any) to the underlying procedure.

15.1.2.5 &response

The &response field specifies the data types of output data (if any) to the underlying procedure.

15.1.2.6 &linked

The &linked field indicates whether (true) or not (false) the Data Exchange object is linked to a Program
Invocation.

15.1.2.7 &programInvocation

The &programInvocation field, which exists only for a Data Exchange object having &linked field equal to true,
specifies the Program Invocation to which the Data Exchange object is linked.

15.2 ExchangeData service

The Exchange Data Service is used by an MMS client to invoke a predefined procedure referenced by a Data
Exchange object at the VMD.

15.2.1 Structure

The structure of the component service primitives is shown in Table 88.

 Parameter Name

 Req Ind Rsp Cnf CBB

 Argument
 Data Exchange Name
 List of Request Data

 Result(+)
 List of Response Data

 Result(-)
 Error Type

 M
 M
 M

 M(=)
 M(=)
 M(=)

 S
 M

 S
 M

 S(=)
 M(=)

 S(=)
 M(=)

Table 88 - DataExchange service

15.2.1.1 Argument

This parameter shall contain the parameters of the Exchange Data service request.

15.2.1.1.1 Data Exchange Name

This parameter, of type Object Name, shall specify the &name field of the Data Exchange object that is to be
invoked.

15.2.1.1.2 List of Request Data

This parameter, of type List of Data, shall specify the list of data values to be delivered to the Data Exchange
object. The data values shall correspond in type and number to that specified by the &request field of the Data
Exchange object specified by the Data Exchange Name parameter. If no data values are specified by this List of
Request Data parameter, an empty list shall be transmitted.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved208

15.2.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

15.2.1.2.1 List of Response Data

This parameter, of type List of Data, shall specify the list of data values to be returned to the MMS client. The
data values shall correspond in type and number to that specified by the &response field of the Data Exchange
object specified by the Data Exchange Name parameter. If no data values are specified by this List of Response
Data parameter, an empty list shall be transmitted.

15.2.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

15.2.2 Service Procedure

15.2.2.1 Preconditions

The MMS Server shall verify:

a) that the Data Exchange object referenced does exist;

b) that the list of request data in the service request conforms to the data types specified in the &request field
of the Data Exchange object;

c) that all the conditions in the Access Control List object referenced by the &accessControl field of the
VMD are satisfied for the service class = WRITE;

d) all the conditions in the Access Control List specified by the &accessControl field of the Data Exchange
object are satisfied for the service class = WRITE;

e) if the Data Exchange object is linked to a Program Invocation, that the associated Program Invocation does
exist and is in the running state. The effect of this service on the Program Invocation, if any, shall be a
local matter.

If any of these conditions is not satisfied, the MMS Server shall return a Result(-).

15.2.2.2 Actions

The MMS Server shall set the value of the &inUse field of the Data Exchange object to true and perform a data
exchange (see 15.1.1). After the D-Exchange function completes, the MMS Server shall change the value of the
&inUse field to false and issue a Result(+) service response, which shall convey the output values of the D-
Exchange function in the List of Response Data. The list of data values conveyed in the List of Response Data
parameter shall conform in type and number to the &response field of the Data Exchange object.

If the Data Exchange object is linked to a Program Invocation and the Program Invocation transitions out of the
running state while the Data Exchange function is being performed, success or failure of the service is a local
matter.

The method of implementation of the D-Exchange function is a local matter. If the D-Exchange function allows
multiple concurrent instances of execution of the procedure, the value of the &inUse field shall be true if any
instance is active.

Success or failure of this service shall not be conditioned on the result of the procedure. Results of the procedure,
if any, shall be returned as part of List of Response Data.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 209

15.3 GetDataExchangeAttributes service

The GetDataExchangeAttributes service is used by an MMS client to request that an MMS server return the
attributes associated with the specified Data Exchange object.

15.3.1 Structure

The structure of the component service primitives is shown in Table 89.

 Parameter Name Req Ind Rsp Cnf CBB

 Argument
 Data Exchange Name

 Result(+)
 In Use
 List Of Request Type Specifications
 List of Response Type Specifications
 Program Invocation
 Access Control List

 Result(-)
 Error Type

 M
 M

 M(=)
 M(=)

 S
 M
 M
 M
 C
 C

 S
 M

 S(=)
 M(=)
 M(=)
 M(=)
 C(=)
 C(=)

 S(=)
 M(=)

 aco

Table 89 - GetDataExchangeAttributes service

15.3.1.1 Argument

This parameter shall contain the parameter of the GetDataExchangeAttributes service request.

15.3.1.1.1 Data Exchange Name

This parameter, of type Object Name, shall be the &name field of the Data Exchange object whose attributes are
requested.

15.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

15.3.1.2.1 In Use

This parameter, of type boolean, shall indicate the value of the &inUse field.

15.3.1.2.2 List of Request Type Specifications

This parameter, of type List of Type Specification, shall indicate the value of the &request field. If no types are
specified by this List of Request Type Specifications, an empty list shall be transmitted.

15.3.1.2.3 List of Response Type Specifications

This parameter, of type List of Type Specification, shall indicate the value of the &response field. If no types are
specified by this List of Response Type Specifications, an empty list shall be transmitted.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved210

15.3.1.2.4 Program Invocation

This optional parameter, of type Identifier, shall indicate the value of the &programInvocation field if present. If
the value of the &linked field is true, this parameter shall be present, otherwise it shall be omitted.

15.3.1.2.5 Access Control List

This parameter, of type Identifier, shall be the value of &accessControl field. This field indicates the Access
Control List object that controls access to this Data Exchange object. This parameter shall not appear unless the
aco parameter CBB has been negotiated.

15.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

15.3.2 Service Procedure

The MMS server shall verify that the specified Data Exchange object exists. If the Data Exchange object does not
exist a Result(-) response shall be returned. Otherwise the attributes of the Data Exchange object shall be
returned.

16 Semaphore Management Services

This clause provides object models for the following objects:

SEMAPHORE
NAMED-TOKEN

SEMAPHORE-ENTRY

This clause specifies the following services:

TakeControl
RelinquishControl
DefineSemaphore
DeleteSemaphore

ReportSemaphoreStatus
ReportPoolSemaphoreStatus
ReportSemaphoreEntryStatus
AttachToSemaphore modifier

The Semaphore Management clause contains services that allow synchronization, control and coordination of
shared resources between MMS users. The mechanism provided by the MMS server is a set of operations on a
semaphore object.

A semaphore may be used by MMS users to control the access to a specific subset of the (real) resources of the
MMS server, to control access to MMS objects within the VMD, or to synchronize remote applications. The use
of semaphores to control access to MMS objects is described in clause 9. The MMS server enforces these rules
with regard to MMS objects. When a semaphore is used to control access to real resources, the MMS server does
not enforce the protection of a specific subset by a semaphore and the rules of use of a semaphore in a given
application are subject to prior agreement between the user applications.

The application may prevent deadlock by using timers, either in the MMS server by providing a parameter in the
service primitive used for obtaining the control of a semaphore, or in the MMS client by cancelling pending
requests.

16.1 The Semaphore Management Model

The Semaphore Management Services apply to semaphore objects managed by an MMS server. MMS has two
classes of semaphore objects:

a) Token Semaphores;

b) Pool Semaphores.

Each class of semaphore is defined by a state machine and specific attributes.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 211

A semaphore is defined as a specific instantiation of the attributes of a generic semaphore class, and is referenced
by a VMD-specific name. This name follows the same rules as every object name in the VMD. The instantiation
of a semaphore may be predefined in the VMD or defined by the DefineSemaphore service.

NOTE MMS only provides a service for the definition of token semaphores. A pool semaphore requires a linking between
some physical or logical local entities in the real device and the named-token handled by the pool semaphore in the
VMD. Typically, a pool semaphore is the representation in the VMD of a real pool semaphore controlling real
resources either from local or remote access; MMS cannot create objects in the real devices (only in the VMD), and
cannot create an explicit mapping between real and virtual resources. For this reason, pool semaphores can only be
predefined. The creation of a token semaphore is provided by MMS with the intent that this semaphore will be used
to synchronize applications between MMS-users, either by prior agreement or by use of the facilities described in
clause 9.

A semaphore is modelled as a queue processor, a list of owners and a queue of requesters. Each element of the
queue or list is an object called a semaphore-entry: it is created by a TakeControl request, or by any MMS service
request modified by the AttachToSemaphore Modifier, or by local means, and is initialized by the parameters
provided in the request. As soon as an element of the queue is served, it is moved into the list of the owners. The
two classes of semaphores follow this general model, but each class defines a specific state machine and a specific
queue-serving algorithm.

The owner of a semaphore is an Application Process, including possibly an Application Process local to the VMD.
The owner is identified by an Application Reference. Unless the owner is a local Application Process, the owner
shall maintain the Application Association with the MMS server used for requesting the semaphore until the
owner relinquishes control of the semaphore. If the Application Association disappears while a semaphore is still
under control of some external Application Process, the control of the semaphore is either relinquished or the
semaphore enters the hung state, depending upon the parameters specified by the MMS client in the service
request to take control of the semaphore.

An MMS client may issue multiple control requests on the same semaphore under the same or multiple
Application Associations and gain multiple ownership of a token or pool semaphore. The MMS server is able to
differentiate these ownerships as long as they are not under the same Application Association; however, a third
party MMS-user using the MMS services cannot differentiate them since the Application Association is known
only by the peer entities.

NOTE Multiple ownerships of a pool semaphore under the same association can be differentiated by the named-token;
multiple ownerships of a token semaphore under the same association can not be differentiated.

16.1.1 The Semaphore Object

This clause introduces the model of a semaphore object.

 SEMAPHORE ::= CLASS {
&name ObjectName,

 -- shall be unique among all semaphores within the VMD
&accessControl Identifier,
&class ENUMERATED {

token ,
pool },

 -- If the value of &class is token, the following two fields shall appear
&numberOfTokens INTEGER OPTIONAL,
&numberOfOwnedTokens INTEGER OPTIONAL,

 -- If the value of &class is pool, the following field shall appear
&NamedTokens NAMED-TOKEN OPTIONAL,
&Owners SEMAPHORE-ENTRY OPTIONAL,
&Requesters SEMAPHORE-ENTRY OPTIONAL,
&eventCondition ObjectName
}

16.1.1.1 &name

The &name field identifies the semaphore. It shall be a VMD-specific Object Name.

16.1.1.2 &accessControl

The &accessControl field identifies an Access Control List object that provides conditions under which this
semaphore may be controlled by a MMS client, deleted, or have its access control changed.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved212

16.1.1.3 &class

The &class field may have the value token or pool; it specifies the class of the semaphore.

16.1.1.4 &numberOfTokens

The &numberOfTokens field defines the maximum number of owners allowed for a token semaphore.

16.1.1.5 &numberOfOwnedTokens

The &numberOfOwnedTokens field contains the number of tokens currently owned for a token semaphore.

16.1.1.6 &NamedTokens

The &NamedTokens field identifies a set of named-token objects controlled by a pool semaphore.

16.1.1.7 &Owners

The &Owners field identifies a set of semaphore-entry objects owning this semaphore.

16.1.1.8 &Requesters

The &Requesters field identifies a set of semaphore-entry objects waiting to obtain the control of this semaphore.

16.1.1.9 &eventCondition

The &eventCondition field identifies an Event Condition object whose &name field value is equal to the
semaphore object's &name field value, whose &accessControl field references an Access Control List object that
specifies never for the choice of AccessCondition in the &deleteAccessCondition field, whose &eClass field
value is network-triggered, whose &ecState field value is disabled, whose &priority field value is
normalPriority, and whose &severity field value is normalSeverity.

16.1.2 Named-token

This clause introduces the model of the named-token object.

 NAMED-TOKEN ::= CLASS {
&name Identifier,
&state ENUMERATED {

free ,
owned } }

16.1.2.1 &name

The &name field identifies the named-token. It shall be an Identifier and be unique to the semaphore that owns it.

16.1.2.2 &state

The &state field identifies whether the named-token is available to a client (free) or is owned by some
semaphore-entry object for a client (owned).

16.1.3 The Semaphore-entry object

This clause introduces the model of the semaphore-entry object.

 SEMAPHORE-ENTRY ::= CLASS {
&entryID OCTET STRING,

 -- this value shall be unique to the semaphore object
 -- that is the parent of this object

&class ENUMERATED {
simple,
modifier },

&semaphore Identifier,
&requester ApplicationReference,
&aaIdentifier INTEGER,
&invokeID INTEGER,

 -- The following field shall appear only if the semaphore is a pool semaphore

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 213

&named-token Identifier OPTIONAL,
&priority Priority,
&entryState ENUMERATED {

queued ,
owner ,
hung },

 -- The following field shall appear only if the entryState has the value queued.
&remainingAcqDelay CHOICE {

time Unsigned32,
forever NULL } OPTIONAL,

 -- The following field shall appear
 -- only if the entryState has the value owner or hung.

&remainingTimeOut CHOICE {
time Unsigned32,
forever NULL } OPTIONAL,

&abortOnTimeOut BOOLEAN,
&relinquishIfLost BOOLEAN }

16.1.3.1 &entryID

The &entryID field identifies a semaphore-entry object and shall be unique for all the semaphore-entry objects
related to a given semaphore.

16.1.3.2 &class

The &class field contains the value modifier if the semaphore-entry has been created by a service modified by
the AttachToSemaphore Modifier, otherwise it contains the value simple.

16.1.3.3 &semaphore

The &semaphore field identifies the semaphore requested or owned by the semaphore-entry.

16.1.3.4 &requester
The &requester field identifies the Application Process whose request created the semaphore-entry.

16.1.3.5 &aaIdentifier

The &aaIdentifier field identifies the Application Association on which the semaphore-entry was created. This
field cannot be reported through any of the MMS services.

16.1.3.6 &invokeID

The &invokeID field identifies a Transaction object in the VMD. This Transaction object exists at least as long as
the semaphore-entry is waiting for the control of the semaphore if the &class field is simple, or as long as the
semaphore has not been relinquished if the &class field is modifier. The possible nesting of modifiers is
managed by this Transaction object.

16.1.3.7 &namedToken

The &named-token field is present if and only if the requested semaphore is a pool semaphore. It identifies the
named-token object related to this semaphore.

16.1.3.8 &priority

The &priority field specifies the priority that the semaphore-entry shall have relative to other semaphore-entry
objects while in the waiting list. The &priority field shall be an integer with values ranging from zero (0) to one
hundred twenty-seven (127) inclusive. Zero shall represent the highest priority, sixty-four (64) the normal priority
and one hundred twenty-seven (127) the lowest priority. Treatment of priority by the MMS server is a local
matter.

 Priority ::= INTEGER (0..127)

 normalPriority Priority ::= 64

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved214

16.1.3.9 &entryState

The &entryState field specifies the state of the semaphore-entry object. It shall have a value either queued,
owner, or hung. The &entryState field contains the value queued while the semaphore-entry is in the requestor
list, owner while it is in the owner list and the Application Association is still maintained, and hung while it is in
the owner list and the Application Association is lost.

16.1.3.10 &remainingAcqDelay

The &remainingAcqDelay field shall specify the duration of time that a semaphore-entry can remain in the
&entryState queued. This field only has meaning if the &entryState field has the value queued. The value
shall be either a positive number or the value forever.

16.1.3.11 &remainingTimeOut

The &remainingTimeOut field shall specify the duration of time that a semaphore-entry can remain in the
&entryState owner or hung. The field shall only have meaning if the &entryState field has the value owner or
hung. The value is either a positive number or the value forever.

16.1.3.12 &abortOnTimeOut

The &abortOnTimeOut field is a boolean that specifies whether (true) or not (false) the Application Association
shall be aborted if the Control Time Out occurs. The requesting MMS-user may make use of the Event Condition
associated with the semaphore together with appropriate Event Actions and Event Enrollments (see clause 18) to
define remedial procedures that should be performed following a Control Time Out.

NOTE There is only one Event Condition for any given semaphore. This Event Condition reflects the state of all the
subordinate semaphore-entry objects in that if a Control Time Out occurs for any semaphore-entry object, this Event
Condition is triggered. An MMS client may make use of the ReportSemaphoreEntryStatus service to determine
which semaphore-entry caused the transition; this Entry will be in the hung state.

16.1.3.13 &relinquishIfLost

The &relinquishIfLost field is a boolean that specifies, if true, that the semaphore-entry shall relinquish the
semaphore if the Application Association identified by the &aaIdentifier field is lost. The value false means that,
in such a situation, the semaphore-entry shall not relinquish the semaphore, but rather shall place the value hung
in the &entryState field value.

16.1.4 Model of a Semaphore-entry

The semaphore-entry model is provided in Figure 13.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 215

Non-Existent

Queued

Owner Hung

1,2,3 4,5,6,3

7

8,9,10,11,3

12,13,3

14

4,3

Figure 13 - Semaphore Entry model

Transitions of the model are as follows:
1 Attach To Semaphore Modifier
2 Take Control request
3 local Action
4 Time Out
5 Cancel request
6 Association Abort
7 Semaphore Available
8 Relinquish Control request
9 Modified request processed

10 Control Time Out and Abort on Time Out
and Relinquish if Connection Lost

11 Association Abort
and Relinquish if Connection Lost

12 Association Abort and
not Relinquish if Connection Lost

13 Control Time Out and not Abort on Time Out
14 Preempt

A semaphore-entry shall be created either by a TakeControl request, or by any MMS service request modified by
an AttachToSemaphore Modifier, or by a local action requesting control of the semaphore. After creation, the
semaphore-entry shall be placed in a queue.

The queue shall be ordered by an algorithm dependent on the class of semaphore serving the queue. When the
semaphore-entry is at the top of the queue and the semaphore is able to serve it, the semaphore-entry shall be
granted control of the semaphore and shall be removed from the queue. If the semaphore-entry has been created
by a TakeControl request, a Result(+) response shall be issued. If it has been created by a modified request, the
modified request shall be released for further processing as specified in the service procedure under control of the
Transaction object.

If the Remaining Acquisition Delay timer associated with the request expires before control has been granted, the
semaphore-entry shall be deleted and a Result(-) response shall be issued.

A semaphore-entry that is in control of the semaphore shall release control of the semaphore either following a
RelinquishControl request issued on the same association, or when the modified request has been processed, or by
local means, depending upon the way the control had been requested. If a Control Time Out occurs, depending
upon the value of the Abort on Time Out attribute, either the association shall be aborted and the semaphore-entry
processed as for an association abort, or the semaphore-entry shall be placed in the hung state. The related Event
Condition shall be triggered.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved216

If the application association upon which the request was received is aborted while the semaphore-entry is in
control of the semaphore and the value of the &relinquishIfConnectionLost field is true, the control of the
semaphore shall be released. If the application association upon which the request was received is aborted while
the semaphore-entry is in control of the semaphore and the value of the &relinquishIfConnectionLost field is false,
the semaphore-entry shall remain in the hung state until a preemptive TakeControl request is issued by any
MMS-user.

Multiple requests for control of a single semaphore, issued by the same MMS client to the same MMS server are
independent. Therefore the second request shall remain queued while the first request is served.

16.1.5 Model of the token semaphore

The token semaphore is described by the model in Figure 14.

Free Tokens Owned Tokens

Take Control Token

Relinquish Token

Figure 14 - Token Semaphore model

A token semaphore is modeled by a collection of identical tokens, each token evolving between the states free
and owned. The total number of tokens represents the maximum number of owners of the semaphore (a token
semaphore with only one token is a mutually exclusive semaphore). The state of the semaphore is defined by the
number of free tokens and the number of owned tokens. The Take Control Token transition moves one token
from the state free to the state owned, and the Relinquish Token transition moves one token from the state
owned to the state free.

Each owned token is associated with a semaphore-entry in the state owner or hung. The Take Control Token
transition models the association of a token with a semaphore-entry and the transition of a semaphore-entry from
the state queued to owner. The Relinquish Control transition models the deletion of a semaphore-entry in the
state owner.

At the creation of the semaphore, all the tokens shall be free. As soon as a semaphore-entry is created, one
token shall evolve into the state owned. A token shall evolve from free to owned each time there is a free
token and there is a semaphore-entry in the state queued, either following the release of a token or the creation of
a semaphore-entry. A token shall evolve from owned to free when the associated semaphore-entry is deleted,
following a RelinquishControl request or the end of processing of a AttachToSemaphore modified request, or
through a local action. A preempt request shall maintain the token in the state owned while changing the
associated semaphore-entry.

The queue of waiting semaphore-entries shall be served on a first-in-first-out basis for the entries of same priority.
The algorithm used for handling prioritized queues is a local matter, and shall be specified in the Configuration
and Initialization Statement (CIS) (see ISO 9506-2, clause 25).

16.1.6 Model of the Pool Semaphore

A pool semaphore may be described by the model in Figure 15.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 217

Free Named
Tokens

Owned Named

Token

Take Control of a Named Token

Relinquish a Named Token

Figure 15 - Pool Semaphore model

A pool semaphore is modeled as a collection of named-tokens, each named-token evolving between the states
free and owned. The difference between a token semaphore and a pool semaphore from a modelling point of
view is that the tokens handled by a pool semaphore are identifiable by a name that may be specified when
requesting the semaphore. With that difference, the description of the token semaphore applies to the pool
semaphore.

The queue of waiting semaphore-entries shall be served on a first-in-first-out basis for the entries of same priority.
If the entry at the top of the queue requests a non-available named-token, this entry shall remain at the top of the
queue and the next entry processed. The algorithm used for handling prioritized queues is a local matter, and shall
be specified in the Configuration and Initialization Statement (CIS) (see ISO 9506-2, clause 25).

16.2 TakeControl service

The TakeControl service may be used by an MMS client in order to obtain control of a semaphore.

16.2.1 Structure

The structure of the component service primitives is shown in Table 90.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Semaphore Name
 Named Token
 Priority
 Acceptable Delay
 Control Time Out
 Abort On Time Out
 Relinquish if Connection Lost
 Application To Preempt

Result(+)
 Named Token

Result(-)
 Error Type

M
M
U
M
U
U
C
M
U

M(=)
M(=)
U(=)
M(=)
U(=)
U(=)
C(=)
M(=)
U(=)

S
C

S
M

S(=)
C(=)

S(=)
M(=)

Table 90 - TakeControl service

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved218

16.2.1.1 Argument

This parameter shall convey the parameters of the TakeControl service request.

16.2.1.1.1 Semaphore Name

This parameter, of type Object Name, shall specify the &name field of the semaphore to be controlled.

16.2.1.1.2 Named Token

This optional parameter, of type Identifier, shall be provided if and only if the semaphore is a pool semaphore. If
provided, it shall specify the named-token controlled by the pool semaphore over which the MMS client wishes to
be granted control. If this parameter is not provided and if the semaphore is a pool semaphore, the choice of the
allocated named-token shall be made by the MMS server.

16.2.1.1.3 Priority

This parameter, of type integer, shall identify the priority that this TakeControl service request should have as
compared to other (possible) TakeControl requests, as well as to services using the AttachToSemaphore Modifier,
that are awaiting the semaphore identified in the TakeControl request.

16.2.1.1.4 Acceptable Delay

This parameter shall indicate either the duration of time in milliseconds for which the requesting user is willing to
wait for control to be allocated, or the value forever. If a zero value is specified for this parameter, this means
that no delay is acceptable. (That is, if the semaphore or named-token is not immediately available, the service
shall fail.) The granularity of one millisecond is not required. The granularity supported by the MMS server shall
be specified in the Configuration and Initialization Statement (CIS) (see ISO 9506-2, clause 25).

16.2.1.1.5 Control Time Out

This parameter shall specify either the duration of time in milliseconds for which control of the semaphore may be
held (after it is obtained), or the value forever. If this time limit is exceeded, and the value of the Abort On
Time Out parameter is true, the Application Association shall be aborted with a provider abort and the semaphore-
entry shall be relinquished or changed to the hung state according to the value of the Relinquish If Connection
Lost parameter. If this time limit is exceeded and the value of the Abort On Time Out parameter is false, the
semaphore-entry shall be changed to the hung state. In either case, the related Event Condition shall be triggered.
The granularity of one millisecond is not required. The granularity supported by the MMS server shall be
specified in Configuration and Initialization Statement (CIS) (see ISO 9506-2, clause 25).

16.2.1.1.6 Abort On Time Out

This parameter, of type boolean, shall be provided if the Control Time Out parameter is provided. The value true
shall specify that the Association shall be aborted in case the Control Time Out expires. The value false shall
specify that the related Event Condition shall be signalled.

16.2.1.1.7 Relinquish If Connection Lost

This parameter, of type boolean, shall specify if true that the MMS server shall relinquish the semaphore if the
owner of the semaphore loses the ability to control it, either due to the loss of the association used for acquiring
the semaphore, or to a local failure. The value false shall mean that in the same situation the MMS server shall
maintain the semaphore in the owned state, with the associated semaphore-entry in the hung state.

16.2.1.1.8 Application To Preempt

This optional parameter, of type Application Reference, shall specify the owner of a semaphore-entry that is in the
hung state. The presence of this parameter shall indicate that the requester of the service wants to take control of
a semaphore by preempting control of a semaphore-entry having state hung whose owner matches the
Application To Preempt parameter.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 219

16.2.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall include the
following parameter.

16.2.1.2.1 Named Token

If the specified semaphore is a pool semaphore, this parameter shall either specify the named-token specified in
the Named Token parameter of the request, or a named-token allocated from the pool of named-tokens if the
Named Token parameter was not provided in the request. If the specified semaphore is a token semaphore, this
parameter shall not be present.

16.2.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

16.2.2 Service Procedure

16.2.2.1 Actions if Application To Preempt parameter is not present

16.2.2.1.1 Preconditions

The MMS server shall:

a) verify that the semaphore identified by the Semaphore Name parameter exists;

b) if the Named Token parameter is present in the indication primitive, verify that the semaphore is a pool
semaphore and that a named-token corresponding to this parameter exists;

c) verify that all the conditions in the Access Control List object referenced by the &accessControl field of
the VMD are satisfied for the service class = LOAD;

d) verify that all the conditions in the Access Control List object referenced by the &accessControl field of
the semaphore are satisfied for the service class = LOAD.

If any of these conditions is not satisfied, a Result(-) shall be returned with an error class = ACCESS and error
code = OBJECT-ACCESS-DENIED. The remainder of this procedure shall be skipped.

16.2.2.1.2 Step 1

The MMS server shall create a semaphore-entry object and add it to the &Requesters field of the semaphore. The
fields of the semaphore-entry shall be initialized as follows:

a) The &entryID field shall contain a locally selected value unique to this semaphore.

b) The &class field shall be set to simple.

c) The &semaphore field shall be initialized to the semaphore indicated by the Semaphore Name parameter.

d) The &requester field shall identify the Application Process that issued the request.

e) The &aaIdentifier field shall be initialized to a value identifying the application association over which the
request was received.

f) The &invokeID field shall be initialized to the value of the Invoke ID parameter of the indication (see 5.5).

g) If the semaphore is a pool semaphore, the &namedToken field shall be initialized to the value of the
Named Token parameter of the indication if provided, otherwise it shall be empty.

h) The &priority field shall be initialized to the value of the Priority parameter.

i) The &entryState shall be initialized to the value queued.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved220

j) If no value of the Acceptable Delay parameter is provided, the value of the &remainingAcqDelay field
shall be set to forever. If a value of this parameter is provided, the &remainingAcqDelay field shall be
initialized to the value of the Acceptable Delay parameter, and the associated Acquisition Delay Timer
activated.

k) If no Control Time Out parameter is provided, the value of the &remainingTimeOut field shall be set to
forever. If a value of this parameter is provided, the &remainingTimeOut field shall be initialized to the
value of the Control Time Out parameter.

l) If the Abort On Time Out parameter is present, the &abortOnTimeOut field shall be initialized to the value
of the Abort On Time Out parameter.

m) The &relinquishIfLost field shall be initialized to the value of the Relinquish If Connection Lost parameter.

16.2.2.1.3 Step 2 - Pool semaphore

If the semaphore is a pool semaphore and if the Named Token parameter is present in the indication primitive,
wait until the named-token identified by this parameter is in the free state. If the Named Token parameter was
not present in the indication primitive, wait until there is any named-token in the free state and place its &name
field in the &namedToken field of the semaphore-entry. Then:

a) Change the &state field of this named-token to owned.

b) Remove the semaphore-entry from the &Requesters field of the semaphore.

c) Place the semaphore-entry in the &Owners field of the semaphore.

16.2.2.1.4 Step 2 - Token semaphore

If the semaphore is a token semaphore, wait until the &numberOfOwnedTokens field is less than the
&numberOfTokens field of the semaphore. Then:

a) Increase by one the &numberOfOwnedTokens field of the semaphore.

b) Remove the semaphore-entry from the &Requesters field of the semaphore.

c) Place the semaphore-entry in the &Owners field of the semaphore.

16.2.2.1.5 Step 3

Return a Result(+).

16.2.2.2 Actions if Application To Preempt parameter is present

16.2.2.2.1 Preconditions

The MMS server shall:

a) verify that the semaphore identified by the Semaphore Name parameter exists.

b) verify that there exists at least one semaphore-entry whose &requester field matches the Application to
Preempt parameter and whose &entryState field is hung.

c) if the semaphore is a pool semaphore and the Named Token parameter is present in the indication
primitive, verify that the Named Token parameter matches the &namedToken field of the semaphore-entry.

d) verify that all the conditions in the Access Control List object referenced by the &accessControl field of
the VMD are satisfied for the service class = LOAD.

e) verify that all the conditions in the Access Control List object referenced by the &accessControl field of
the semaphore are satisfied for the service class = LOAD.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 221

If any of these conditions is not satisfied, a Result(-) shall be returned with an error class = ACCESS and error
code = OBJECT-ACCESS-DENIED. The remainder of this procedure shall be skipped.

16.2.2.2.2 Step 1

If there is more than one semaphore-entry that matches the Preconditions, the MMS server shall choose one of
them (local matter) to preempt. For the selected semaphore-entry, the MMS server shall:

a) replace the current value of the &requester field with the Application Reference value of the MMS client.

b) replace the current value of the &aaIdentifier field with a value identifying the Application Association
over which this indication was received.

c) replace the &relinquishIfLost field with the value of the Relinquish If Connection Lost parameter of the
indication.

d) if the Remaining Control Time Out parameter is not present in the indication, set the value of the
&remainingTimeOut field to forever and deactivate any associated Remaining Control Time Out Timer.

e) if a Remaining Control Time Out parameter is present in the indication, set the &remainingTimeOut field
to the value in the indication and activate the associated timer.

f) set the &entryState field to owner.

g) set the &class field to simple.

Return a Result(+).

16.3 RelinquishControl service

The RelinquishControl service may be used by an MMS-user to relinquish control of a semaphore for which
control is held.

16.3.1 Structure

The structure of the component service primitives is shown in Table 91.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Semaphore Name
 Named Token

Result(+)

Result(-)
 Error Type

M
M
C

M(=)
M(=)
C(=)

S

S
M

S(=)

S(=)
M(=)

Table 91 - RelinquishControl service

16.3.1.1 Argument

This parameter shall convey the parameters of the RelinquishControl service request.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved222

16.3.1.1.1 Semaphore Name

This parameter, of type Object Name, shall be the name of the semaphore for which control is to be relinquished.

16.3.1.1.2 Named Token

This parameter, of type Identifier, shall be provided if the semaphore is a pool semaphore and shall not be
provided otherwise. It shall specify the named-token to be relinquished and shall be the same as the named-token
from the Result(+) parameter of the TakeControl.confirm service primitive in which control was granted, if issued.

16.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

16.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

16.3.2 Service Procedure

16.3.2.1 Preconditions

The MMS server shall:

a) verify that the semaphore identified by the Semaphore Name exists.

b) verify that there is at least one semaphore-entry on the &Owners field of the semaphore whose &requester
field references the Application Process of the MMS client.

c) if the Named Token parameter is present in the indication, that the &namedToken field of this semaphore-
entry references this Named Token, and that the Named Token is in the owned state .

If any of these conditions is not satisfied, return a Result(-) and skip the remainder of this procedure.

16.3.2.2 Actions

If there are multiple semaphore-entries that meet the criteria of this service procedure, the MMS server shall select
one entry (local matter) for deletion.

For the selected semaphore-entry. the MMS server shall:

a) if the semaphore is a pool semaphore, change the state of the Named Token indicated by the
&namedToken field of the semaphore-entry to free.

b) if the semaphore is a token semaphore, decrease by one the value of the &numberOfOwnedTokens field of
the semaphore.

c) remove the semaphore-entry from the &Owners field of the semaphore.

d) delete the semaphore-entry.

Return a Result(+).

16.4 DefineSemaphore service

The DefineSemaphore service may be used by an MMS client to create a token semaphore at the MMS server.

16.4.1 Structure

The structure of the component service primitives is shown in Table 92.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 223

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Semaphore Name
 Number of Tokens

Result(+)

Result(-)
 Error Type

M
M
M

M(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 92 - DefineSemaphore service

16.4.1.1 Argument

This parameter shall convey the parameters of the DefineSemaphore service request.

16.4.1.1.1 Semaphore Name

This parameter, of type Object Name, shall be the name to be associated with the semaphore to be created. It shall
be a VMD-specific name.

16.4.1.1.2 Number of Tokens

This parameter, of type integer, shall specify the number of owners allowed to control the semaphore
simultaneously.

16.4.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

16.4.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

16.4.2 Service Procedure

16.4.2.1 Preconditions

The MMS server shall:

a) verify that all the conditions in the Access Control List object referenced by the &accessControl field of
the VMD are satisfied for the service class = LOAD.

b) verify that no semaphore already exists whose &name field is equal to the Semaphore Name parameter.

If any of these conditions is not satisfied, a Result(-) shall be returned with an error class = ACCESS and error
code = OBJECT-ACCESS-DENIED. The remainder of this procedure shall be skipped.

16.4.2.2 Actions

The MMS server shall create the semaphore and initialize it as follows:

a) The &name field shall be set to the value of the Semaphore Name parameter.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved224

b) The &accessControl field shall be set to reference an Access Control List object that will report the value
of MMS Deletable as true (see 9.1.4). The predefined symbol 'M_Deletable' (see 25.3.2.1) may be used for
this purpose.

c) The new semaphore shall be added to the &Semaphores field of the Access Control List object referenced
by the &accessControl field of this semaphore.

d) The &class field shall be set to token.

e) The &numberOfTokens field shall be set to the value of the Number Of Tokens parameter.

f) The &numberOfOwnedTokens field shall be initialized to the value zero (0).

g) The &Owners field shall be empty

h) The &Requesters field shall be empty.

i) An Event Condition object shall be created. The Event Condition object shall be initialized as follows:

1) The &name field shall be set equal to the value of the &name field of this semaphore.

2) The &accessControl field shall be initialized to reference an Access Control List object that will
report the value of MMS Deletable as false (see 9.1.4). The predefined symbol 'M_NonDeletable'
(see 25.3.2.2) may be used for this purpose.

3) This Event Condition shall be added to the &EventConditions field of the Access Control List field
referenced by the &accessControl field of this Event Condition.

4) The &ecClass field shall be set to network-triggered.

5) The &ecState field shall be set to disabled.

6) The &priority field shall be set to normalPriority.

7) The &severity field shall be set to normalSeverity.

8) The &EventEnrollments field shall be set to empty.

j) The &eventCondition field of the semaphore shall be set to reference this Event Condition object.

Return a Result(+).

16.5 DeleteSemaphore service

The DeleteSemaphore service may be used by an MMS-user in order to delete a semaphore if such deletion is
permitted.

16.5.1 Structure

The structure of the component service primitives is shown in Table 93.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 225

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Semaphore Name

Result(+)

Result(-)
 Error Type

M
M

M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 93 - DeleteSemaphore service

16.5.1.1 Argument

This parameter shall convey the parameter of the DeleteSemaphore service request.

16.5.1.1.1 Semaphore Name

This parameter, of type Object Name, shall be the name of the semaphore to be deleted.

16.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

16.5.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

16.5.2 Service Procedure

16.5.2.1 Preconditions

The MMS server shall:

a) verify that the semaphore exists.

b) verify that the &Owners field is empty.

c) verify that all the conditions in the Access Control List object referenced by the &accessControl field of
the VMD are satisfied for the service class = DELETE.

d) verify that all the conditions in the Access Control List object referenced by the &accessControl field of
the semaphore are satisfied for the service class = DELETE.

If any of these conditions is not satisfied, the service request fails and a Result(-) shall be returned.

16.5.2.2 Actions

The MMS server shall:

a) remove the reference to this semaphore from the &Semaphores field of the Access Control List object
referenced by the &accessControl field of the semaphore.

b) remove the reference to the Event Condition object referenced by the &eventCondition field of the
semaphore from the &EventConditions field of the Access Control List object referenced by the
&accessControl field of this Event Condition.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved226

c) delete the specified semaphore and the Event Condition object referenced by the &eventCondition field of
the semaphore.

Return a Result(+).

16.6 ReportSemaphoreStatus service

The ReportSemaphoreStatus service may be used by an MMS client to obtain the status of a semaphore.

16.6.1 Structure

The structure of the component service primitives is shown in Table 94.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Semaphore Name

Result(+)
 MMS Deletable
 Class
 Number Of Tokens
 Number Of Owned Tokens
 Number Of Hung Tokens
 Access Control List

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M
M
M
M
C

S
M

S(=)
M(=)
M(=)
M(=)
M(=)
M(=)
C(=)

S(=)
M(=)

aco

Table 94 - ReportSemaphoreStatus service

16.6.1.1 Argument

This parameter shall convey the parameters of the ReportSemaphoreStatus service request.

16.6.1.1.1 Semaphore Name

This parameter, of type Object Name, shall specify the name of the token or pool semaphore for which the status is
to be supplied.

16.6.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

16.6.1.2.1 MMS Deletable

This parameter, of type boolean, shall specify if true that the semaphore may be deleted using the
DeleteSemaphore service. Subclause 9.1.4 specifies the value to be returned by this parameter.

16.6.1.2.2 Class

This parameter, of type integer, shall specify the class of the semaphore and shall have either the value token, or
pool.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 227

16.6.1.2.3 Number of Tokens

This parameter, of type integer, shall specify the maximum number of owners allowed by the semaphore.

16.6.1.2.4 Number Of Owned Tokens

This parameter, of type integer, shall specify the current number of owned tokens of the semaphore, whose
associated semaphore-entry is not in the hung state.

16.6.1.2.5 Number Of Hung Tokens

This parameter, of type integer, shall specify the number of owned tokens whose associated semaphore-entry is in
the hung state.

16.6.1.2.6 Access Control List

This parameter, of type Identifier, shall indicate the name of the Access Control List object that controls access to
this semaphore. This parameter shall not appear unless the aco parameter CBB has been negotiated.

16.6.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

16.6.2 Service Procedure

16.6.2.1 Preconditions

The MMS server shall verify that the semaphore identified by the Semaphore Name parameter exists. If this
condition is not satisfied, a Result(-) shall be returned.

16.6.2.2 Actions

The MMS server shall return the response service primitive containing values of the parameters corresponding to
this semaphore.

16.7 ReportPoolSemaphoreStatus service

The ReportPoolSemaphoreStatus service may be used by a MMS client to obtain the name and the state of the
named-tokens controlled by a pool semaphore at the MMS server.

16.7.1 Structure

The structure of the component service primitives is shown in Table 95.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved228

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Semaphore Name
 Name To Start After

Result(+)
 List Of Named Token
 Free Named Token
 Owned Named Token
 Hung Named Token
 More Follows

Result(-)
 Error Type

M
M
U

M(=)
M(=)
U(=)

S
M
S
S
S
M

S
M

S(=)
M(=)
S(=)
S(=)
S(=)
M(=)

S(=)
M(=)

Table 95 - ReportPoolSemaphoreStatus service

16.7.1.1 Argument

This parameter shall convey the parameters of the ReportPoolSemaphoreStatus service request.

16.7.1.1.1 Semaphore Name

This parameter, of type Object Name, shall specify the name of the semaphore to be reported.

16.7.1.1.2 Name To Start After

This optional parameter shall indicate, if present, that the MMS client requests only the sublist beginning with a
name other than the first name in the list. If the Name To Start After parameter does not match an existing named-
token at the MMS server, the sublist shall begin with the first name to follow the Name To Start After parameter.

16.7.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

16.7.1.2.1 List Of named-token

This parameter shall be a list, possibly empty, ordered by the &name field of the named-token according to the
collation sequence defined in 5.4.2. Each element of the list shall be one of the following parameters:

16.7.1.2.1.1 Free named-token

This parameter, of type Identifier, shall contain the name of a named-token whose &state field has the value
free.

16.7.1.2.1.2 Owned named-token

This parameter, of type Identifier, shall contain the name of a named-token whose &state field has the value
owned, and whose associated semaphore-entry is not in the hung state.

16.7.1.2.1.3 Hung named-token

This parameter, of type Identifier, shall contain the name of a named-token whose &state field has the value
owned, and whose associated semaphore-entry is in the hung state.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 229

16.7.1.2.2 More Follows

This parameter, of type boolean, shall indicate whether additional ReportPoolSemaphoreStatus requests are
necessary to retrieve all the requested information. If true, more requests are necessary. If false, then either the
List Of Named Token parameter contains the last item in the list, or the List Of Named Token parameter is empty.

16.7.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

16.7.2 Service Procedure

16.7.2.1 Preconditions

The MMS server shall verify that:

a) a semaphore whose &name field matches the Semaphore Name parameter exists;

b) the semaphore is a pool semaphore.

If any of these conditions is not met, the MMS server shall return a Result(-).

16.7.2.2 Actions

The MMS server shall prepare a list of named-tokens from the &NamedTokens field of the pool semaphore,
ordered by the collation sequence defined in 5.4.2. The MMS server shall return a List Of Named Token
parameter, derived from this complete list. The List Of Named Token parameter shall begin at the beginning of
the list if the Name To Start After parameter is not provided in the service indication; otherwise, it begins at the
first name in the list after the value provided by the Name To Start After parameter.

The More Follows parameter shall be set to true if more items remain to be reported after this list is processed;
otherwise this parameter shall be set to false. If the List of named-tokens is empty, the More Follows parameter
shall be false.

The number of items to be returned in this list (i.e. the size of the subset of the complete list) is a local matter.

16.8 ReportSemaphoreEntryStatus service

The ReportSemaphoreEntryStatus service may be used by an MMS client to obtain the status of the semaphore-
entries dependent on a semaphore at the MMS server.

16.8.1 Structure

The structure of the component service primitives is shown in Table 96.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved230

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Semaphore Name
 State
 Entry ID To Start After

Result(+)
 List Of Semaphore Entry
 Entry ID
 Entry Class
 Application Reference
 Named Token
 Priority
 Remaining Time Out
 Abort On Time Out
 Relinquish if Connection Lost
 More Follows

Result(-)
 Error Type

M
M
M
U

M(=)
M(=)
M(=)
U(=)

S
M
M
M
M
C
M
M
M
M
M

S
M

S(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)

S(=)
M(=)

Table 96 - ReportSemaphoreEntryStatus service

16.8.1.1 Argument

This parameter shall convey the parameters of the ReportSemaphoreEntryStatus service request.

16.8.1.1.1 Semaphore Name

This parameter, of type Object Name, shall specify the name of the semaphore for which the status of its
semaphore-entries is to be supplied.

16.8.1.1.2 State

This parameter shall specify the &entryState field of the semaphore-entry. This parameter may have the value
QUEUED, OWNER, or HUNG.

16.8.1.1.3 Entry ID To Start After

This optional parameter, of type octet string, shall indicate, if present, that the MMS client requests only the sublist
of semaphore-entries beginning after the semaphore-entry whose Entry ID is provided by this parameter to be
returned. If the Entry ID does not match an existing semaphore-entry at the MMS server, the sublist shall begin
with the first semaphore-entry whose &entryID field is numerically greater than the Entry ID parameter.

16.8.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

16.8.1.2.1 List Of Semaphore-entry

This parameter shall be a list, possibly empty, ordered by the &entryID field of the semaphore-entry. Each
element of the list shall contain the following parameters:

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 231

16.8.1.2.1.1 Entry ID

This parameter, of type octet string, shall be the &entryID field of a semaphore-entry.

16.8.1.2.1.2 Entry Class

This parameter shall contain the &class field of the semaphore-entry. It may have the value simple or
modifier.

16.8.1.2.1.3 Application Reference

This parameter, of type ApplicationReference, shall identify the MMS-user that created the semaphore-entry.

16.8.1.2.1.4 Named Token

This optional parameter, of type Identifier, shall be present if the semaphore is a pool semaphore. Otherwise it
shall not be present. It shall contain the value of the &namedToken field of the semaphore-entry.

16.8.1.2.1.5 Priority

This parameter, of type integer, shall contain the value of the &priority field of the semaphore-entry.

16.8.1.2.1.6 Remaining Time Out

This optional parameter, of type integer, shall contain either the &remainingAcqDelay field if the semaphore-entry
is in the state queued, or the &remainingTimeOut field if the semaphore-entry is in the state owner.

16.8.1.2.1.7 Abort On Time Out

This parameter, of type boolean, shall contain the value of the &abortOnTimeOut field of the semaphore-entry.

16.8.1.2.1.8 Relinquish if Connection Lost

This parameter, of type boolean, shall contain the value of the &relinquishIfLost field of the semaphore-entry.

16.8.1.2.2 More Follows

This parameter, of type boolean, shall indicate whether additional ReportSemaphoreEntryStatus requests are
necessary to retrieve the information for all semaphore-entries. If true, more requests are necessary. If false,
either the List Of Semaphore Entry parameter contains the last item in the list, or it is empty.

16.8.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

16.8.2 Service Procedure

16.8.2.1 Preconditions

The MMS server shall verify that the semaphore identified by the Semaphore Name parameter exists. If this
condition is not satisfied, a Result(-) shall be returned.

16.8.2.2 Actions

The MMS server shall prepare a list of semaphore-entries as follows:

a) if the State parameter of the service request is QUEUED, the list shall be the &Requesters field of the
semaphore;

b) if the State parameter of the service request is OWNER, the list shall be those semaphore-entries from the
&Owners field of the semaphore whose &entryState field is owner;

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved232

c) if the State parameter of the service request is HUNG, the list shall be those semaphore-entries from the
&Owners field of the semaphore whose &entryState field is hung.

The list shall be ordered by the numerical value of the &entryID field of the semaphore-entry. The List Of
Semaphore Entry parameter shall be constructed from this list, either in its entirety, or in a sublist drawn from this
list.

If the Entry ID To Start After parameter is present in the service indication, the sublist shall begin with the first
semaphore-entry whose &entryID field is numerically greater than the value of the Entry ID To Start After
parameter. If the Entry ID To Start After parameter is not present in the service indication, the list (or sublist)
shall begin with the first semaphore-entry on the list.

If the list to be returned is too large to be sent in a single service response, the MMS server shall return a sublist of
the total list and shall return the More Follows parameter with the value true. The MMS client may send another
service request, with the Entry ID To Start After parameter containing the last Entry ID returned.

NOTE Due to the dynamics of semaphore-entry lists, the range and the state of a specific item of the list may change
between two service requests and the application should be aware of this. This service is designed for handling
recovery procedures in the case of deadlocks or connection aborts, and such situations are static.

A Result(+) shall be returned containing the List of Semaphore Entry parameter.

16.9 AttachToSemaphore Modifier

The AttachToSemaphore Modifier is provided so that the processing of a service request may be delayed at a
MMS server until the control of a semaphore has been granted by this service. Services that are modified are not
acted on immediately, but are placed in a queue corresponding to a semaphore at the MMS server; when this
service request rises to the top of the queue, it is acted on.

16.9.1 Structure

The structure of the component service primitives is shown in Table 97.

 Parameter Name Req Ind CBB

Attach To Semaphore
 Semaphore Name
 Named Token
 Priority
 Acceptable Delay
 Control Time Out
 Abort On Time Out
 Relinquish if Connection Lost

S
M
C
M
U
U
C
M

S(=)
M(=)
C(=)
M(=)
U(=)
U(=)
C(=)
M(=)

Table 97 - AttachToSemaphore Modifier

16.9.1.1 Attach To Semaphore

The Attach To Semaphore parameter is provided as a parameter of the List of Modifier parameter for each
confirmed service request (see 5.6). The sub-parameters of the Attach To Semaphore modifier are specified as
follows:

16.9.1.1.1 Semaphore Name

This parameter, of type Object Name, shall specify the &name field of the semaphore under which the modified
service request is to be controlled.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 233

16.9.1.1.2 Named Token

This parameter, of type character string, shall be provided if the semaphore is a pool semaphore and shall not be
provided otherwise. It shall specify the named-token controlled by the pool semaphore the MMS client wishes to
use for control. The dynamic allocation of a named-token by the MMS server is not allowed, since the modified
request could not identify the allocated named-token.

16.9.1.1.3 Priority

This parameter, of type integer, shall identify the priority that this modified service request should have as
compared to (possible) other TakeControl requests, as well as to services using the AttachToSemaphore Modifier
waiting for the same semaphore.

16.9.1.1.4 Acceptable Delay

This optional parameter, of type integer, shall indicate the duration of time for which the MMS client is willing to
wait for control to be allocated. If a zero value is specified for acceptable delay, this means that no delay is
acceptable. (That is, if the semaphore or named-token is not immediately available, the service to which the
Modifier is attached shall fail.) If no value is specified for acceptable delay, this shall be interpreted as meaning
that any delay is acceptable (that is "wait forever"). The granularity of one millisecond is not required. The
granularity supported by the MMS server shall be specified in Configuration and Initialization Statement (CIS)
(see ISO 9506-2, clause 25).

16.9.1.1.5 Control Time Out

This optional parameter, of type integer, shall specify the duration of time in milliseconds for which control of the
semaphore may be held (after it is obtained). If no value is provided, no control time out applies, and the
semaphore may be held indefinitely. The granularity of one millisecond is not required. The granularity
supported by the MMS server shall be specified in Configuration and Initialization Statement (CIS) (see ISO
9506-2, clause 25).

16.9.1.1.6 Abort On Time Out

This boolean parameter shall be provided if the Control Time Out parameter is provided. The value true shall
mean that the Application Association shall be aborted if the Control Time Out expires. The value false shall
mean that the Application Association is to be maintained and the related Event Condition signalled if the Control
Time Out expires.

16.9.1.1.7 Relinquish If Connection Lost

This boolean parameter shall specify if true that the MMS server shall relinquish the semaphore if the owner of the
semaphore loses the ability to control it, either due to the loss of the association used for acquiring the semaphore,
or to a local failure. The value false shall mean that in the same situation the MMS server shall place the
semaphore-entry in the hung state.

16.9.2 Service Procedure

16.9.2.1 Preconditions

The MMS server shall verify that:

a) all the conditions in the Access Control List object referenced by the &accessControl field of the VMD are
satisfied for the service class = LOAD;

b) all the conditions in the Access Control List object referenced by the &accessControl field of the
semaphore are satisfied for Service Class = LOAD.

c) the semaphore identified by the Semaphore Name parameter exists.

d) the named-token specified in the service request (if present) exists.

e) the delay specified by the Acceptable Delay parameter has not expired before control of the semaphore is
effective.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved234

f) the service request has not been cancelled by a Cancel service request.

If any of these conditions is not satisfied, a Result(-) shall be returned for the modified service with an error class
= ACCESS and error code = OBJECT-ACCESS-DENIED. The remainder of this procedure shall be skipped.

16.9.2.2 Actions

When the MMS server processes this modifier as part of the transaction object processing of the modified service
(see 7.3.3), it shall create a semaphore-entry object and add it to the &Requesters field of the semaphore. The
fields of the created semaphore-entry shall be initialized as follows:

a) the &entryID field shall contain a locally defined value that shall be unique for each semaphore.

b) the &class field shall be set to modifier.

c) the &semaphore field shall be set to the semaphore indicated by the Semaphore Name parameter.

d) the &requester shall be initialized to the value identifying the Application Process issuing the service
request.

e) the &aaIdentifier attribute shall be initialized to a value identifying the application association on which
the service indication was received.

f) the &invokeID field shall be set to the value of the Invoke ID parameter of the indication. This field
references the Transaction object that controls the execution of this service request.

g) if the semaphore is a pool semaphore, the &namedToken field shall be initialized to the value of the
Named Token parameter of the service indication.

h) the &priority field shall be initialized to the value of the Priority parameter.

i) if no value of the Acceptable Delay parameter is provided, the value of the &remainingAcqDelay field
shall be set to forever. If a value is provided, the &remainingAcqDelay field shall be initialized to the
value of the Acceptable Delay parameter and the associated timer activated.

j) if no value of the Control Time Out parameter is provided, the value of the &remainingTimeOut field shall
be set to forever. If a value is provided, the &remainingTimeOut field shall be initialized to the value
of the Control Time Out parameter.

k) the &abortOnTimeOut field shall be initialized to the value of the Abort On Time Out parameter.

l) the &relinquishIfLost field shall be initialized to the value of the Relinquish If Connection Lost parameter.

m) the &entryState shall be initialized to the value queued.

When control of the semaphore is granted, the service request shall be released for further processing, under
control of the Transaction object. Upon completion of all processing associated with the modified service, the
semaphore shall be relinquished. The semaphore shall also be relinquished (1) upon any abnormal completion of
the request such as a Cancel service, or (2) by an abort of the association if the &relinquishIfLost field so
specifies.

16.10 Conformance

The Semaphore Management Services define parameter conformance requirements for the VMD. These
requirements are described below.

16.10.1 Support for Time

The Configuration and Initialization Statement (CIS) shall provide the granularity of time supported in the
processing of the &remainingAcqDelay and &remainingTimeOut fields of a semaphore-entry object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 235

16.10.2 Support for Priority

The Configuration and Initialization Statement (CIS) shall specify the algorithm executed in the processing of the
&priority field of a semaphore-entry object.

17 Operator Communication services

This clause provides an object model for the following object:

OPERATOR-STATION

This clause specifies the following services:

Input
Output

The Operator Communication Services provide a mechanism for communicating with an Operator Station that
allows display of data, entry of data, or both.

NOTE The MMS Operator Communication Services are intended to be restrictive and simple. In the OSI environment,
general virtual terminal capabilities, including extensive display management, are provided through the ISO Virtual
Terminal (VT) service and protocol, defined in ISO 9040 and ISO 9041, respectively. Systems requiring a general
operator communication facility should make use of VT services instead of the MMS Operator Communication
Services. Similar services are available in other network environments.

17.1 The Operator Communications Model

The Operator Communication Services define an Operator Station object to describe how the Input and Output
services are used. This International Standard does not specify a flow control mechanism to manage the input and
output function for these objects. It is the responsibility of implementation to provide locally defined flow control
mechanisms to ensure data integrity on the Operator Station for multiple transactions for a single MMS-user.

NOTE When more than one MMS-user is competing for the operator station object, the MMS-user should use the Access
Control facility to manage the control of the operator station object. The MMS Server may require the use of a
semaphore by specifying it as a condition in an Access Control List for accepting input and output to the Operator
Station.

17.1.1 The Operator Station object

This clause introduces the model of the Operator Station object.

 OPERATOR-STATION ::= CLASS {
&name Identifier,

 -- shall be unique within its range of specification (VMD)
&accessControl Identifier,
&stationType ENUMERATED {

entry,
display,
entry-display },

 -- The following field shall appear if stationType is entry or entry-display
&inputBuffer MMSString OPTIONAL,

 -- The following field shall appear if stationType is display or entry-display
&outputBuffers SEQUENCE OF MMSString OPTIONAL,
&state ENUMERATED {

idle,
display-prompt-data,
waiting-for-input,
input-buffer-filled,
output-buffers-filled } }

17.1.1.1 &name

The &name field uniquely identifies the Operator Station object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved236

17.1.1.2 &accessControl

The &accessControl field is a reference to an Access Control List object that provides conditions under which this
Operator Station may be read, written, or have its access control changed.

17.1.1.3 &stationType

The &stationType field indicates the type of station for the Operator Station object. There are three possible
values for this field: entry, display, and entry-display.

17.1.1.4 &inputBuffer

The &inputBuffer field contains the value of the Input String parameter of the Input service response. Operator
Station objects whose &stationType field is entry or entry-display have this field.

17.1.1.5 &outputBuffers

The &outputBuffers field specifies zero or more output buffers. These buffers are used either for the List Of
Output Data parameter for the Output service request, or for the List Of Prompt Data parameter for the Input
service request. Operator Station objects whose &stationType field is display or entry-display have this
field.

17.1.1.6 &state

The &state field contains the state of the Operator Station object. An Operator Station object of type entry may
be in one of three states: idle, waiting-for-input-string, and input-buffer-filled. An
Operator Station object of type display may be in one of two states: idle and output-buffers-filled.
An Operator Station object of type entry-display may be in one of five states: idle,
display-list-of-prompt-data, waiting-for-input-string, input-buffer-filled, and
output-buffers-filled. In the idle state, the object may accept Input or Output service requests,
depending on its type. In any other state, the operator station object is busy executing a service request and may
be unavailable for additional service requests depending upon the local flow control mechanism used by the
implementation.

17.1.2 Relationship between the MMS object and the Physical Device

The relationship between the physical operator station device and the &inputBuffer field and the &OutputBuffers
field of the operator station object is specified by a pair of abstract functions that work with physical data storage
areas. The &inputBuffer field of the MMS operator station object is associated with an input buffer, which is a
physical storage area containing the value of the Input String entered by the operator. The &OutputBuffers field
of the MMS operator station object is associated with a set of output buffers, which is a set of physical storage
areas containing the values of either the List Of Prompt Data parameter from the Input service request, or the List
Of Output Data parameter from the Output service request. The abstract functions that provide the mapping of the
values contained in these buffers to the physical device in a way that allows the operator to interact with the Input
and Output service requests are described below.

17.1.2.1 The D-Put Function

The D-Put function obtains the values contained in the set of output buffers and writes these values to the physical
display of the operator station device. This occurs when the List Of Output Data parameter values need to be
displayed for the Output service request, or when the List Of Prompt Data parameter values need to be displayed
for the Input service request.

17.1.2.2 The E-Get Function

The E-Get function obtains the Input String parameter value that is entered by the operator and writes it to the
input buffer. This function completes its process when a locally defined end-of-input indication is received.

17.1.3 Operator Station State Diagram

The state diagram shown in Figure 16 shows the state transitions possible for an Operator Station object of type
entry-display. If the Operator Station object is of type entry, state transitions 2 and 3 shall not be

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 237

permitted. If the Operator Station object is of type display, the state transitions 1, 4, 5, and 6 shall not be
permitted.

Idle

Display List of

Prompt Data

Waiting for Input
String
(from Operator)

Input Buffer
Filled

Output Buffers
Filled

1

2,3

4

5 6

78,9

Figure 16 - Operator Station State Diagram

Transitions of the Operator Station state diagram are as follows:

 1 - Output.indication
 2 - Output.response (+)
 3 - Output.response (-)
 4 - Input.indication
 5 - (D-Put function finished displaying List Of Prompt Data, if
any. If present, Input Time Out begins.)

 6 - Input.response (-) due to a time out
 7 - (E-Get function finished entering the Input String into input
buffer. If present, Input Time Out stops.)
 8 - Input.response (+)
 9 - Input.response (-)

17.2 Input service

The Input service may be used by an MMS client to request data from an Operator Station object of type entry
or entry-display at the MMS server.

17.2.1 Structure

The structure of the component service primitives is shown in Table 98.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved238

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Operator Station Name
 Echo
 List of Prompt Data
 Input Time Out

Result(+)
 Input String

Result(-)
 Error Type

M
M
M
U
U

M(=)
M(=)
M(=)
U(=)
U(=)

S
M

S
M

S(=)
M(=)

S(=)
M(=)

output

Table 98 - Input service

17.2.1.1 Argument

This parameter shall convey the service specific parameters of the Input service request.

17.2.1.1.1 Operator Station Name

This parameter, of type Identifier, shall identify the Operator Station object from which the Input String is
requested.

17.2.1.1.2 Echo

This parameter, of type boolean, shall indicate whether (true) or not (false) the value of the Input String parameter
is to be displayed on the Operator Station.

17.2.1.1.3 List Of Prompt Data

This optional parameter shall be a list of character strings. This parameter shall only be present if the Operator
Station object type is entry-display and the output service CBB is supported.

17.2.1.1.4 Input Time Out

This optional parameter, of type integer, shall specify a time out period (in seconds) for an operator to complete
the process of entering the value of the Input String on the Operator Station.

17.2.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall include the
following parameter.

17.2.1.2.1 Input String

This parameter, of type character string, is the data provided by the operator. The Input String parameter in the
Input service response shall contain the value of one input buffer. The determination of the end of a line of Input
String is a local matter, but the end of line indication shall not be included in the Input String.

NOTE Multiple line inputs require multiple Input service requests.

17.2.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 239

17.2.2 Service Procedure

17.2.2.1 Preconditions

The MMS server shall verify that:

a) an Operator Station object corresponding to the Operator Station Name parameter exists;

b) the conditions in the Access Control List object referenced by the &accessControl field of the VMD are
satisfied for the service class = WRITE;

c) the conditions in the Access Control List object referenced by the &accessControl field of the Operator
Station object are satisfied for the service class = WRITE;

d) the Operator Station object is in the idle state;

e) the Operator Station object can support the Input Time Out parameter specified in the Input service
request;

f) if the List Of Prompt Data parameter is present, that the Operator Station object has a &stationType field
equal to entry-display and the output service CBB is supported;

g) if the Echo parameter is true, that the Operator Station object has a &stationType field equal to entry-
display;

h) a time out has not occurred.

If any of these conditions is not met, a Result(-) shall be returned and the remainder of this procedure shall be
skipped.

17.2.2.2 Actions

If the List of Prompt Data parameter is present, this parameter shall be copied into the &outputBuffers field of the
Operator Station object. The D-Put function shall display the value of the &OutputBuffers on the display. Each
element of the list shall represent a single line on the display.

If the Input Time Out parameter is present in the service indication, the MMS server shall begin timing this Input
service request when the processing of the transaction object has begun, or, if the List Of Prompt Data parameter
is present, immediately after the D-Put function has finished writing the value of this parameter to the display of
the Operator Station. Timing shall stop for this Input service request immediately after the E-Get function has
written the Input String entered by the operator to the input buffer.

The values for the Input Time Out parameter ranges from 0 to 2**31-1. If this parameter is present and the
specified time out period expires, an error result shall be returned. If this parameter is absent, an unlimited time
out period is indicated. A zero value for this parameter shall result in an Result(-) unless the E-Get function
indicates that it has already written the Input String entered by the operator into the &inputBuffer.

The MMS server shall invoke the E-Get function to copy the Input String entered by the operator into the
&inputBuffer.

If the Echo parameter of the Input service indication is true, the value contained in the &inputBuffer shall be
copied into the &OutputBuffers for display by the D-Put function. This parameter shall be ignored for Operator
Station objects of type entry.

The contents of the &inputBuffer shall be placed in the Input String parameter and a Result(+) shall be returned.

17.3 Output service

An MMS client may request the Output service to display data on an Operator Station object at the MMS server.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved240

17.3.1 Structure

The structure of the component service primitives is shown in Table 99.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Operator Station Name
 List of Output Data

Result(+)

Result(-)
 Error Type

M
M
M

M(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 99 - Output service

17.3.1.1 Argument

This parameter shall convey the service specific parameters of the Output service request.

17.3.1.1.1 Operator Station Name

This parameter, of type Identifier, shall identify the Operator Station object to which output data is to be displayed.

17.3.1.1.2 List Of Output Data

This parameter shall be a list of character strings to be displayed. Each element of the list represents a single line
on the display.

17.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

17.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

17.3.2 Service Procedure

17.3.2.1 Preconditions

The MMS server shall verify that:

a) the Operator Station identified by the Operator Station Name parameter exists.

b) the Operator Station has a &stationType field of display or entry-display.

c) all the conditions in the Access Control List object referenced by the &accessControl field of the VMD are
satisfied for the service class = READ.

d) all the conditions in the Access Control List object referenced by the &access Control field of the Operator
Station object are satisfied for Service Class = READ.

If any of these conditions is not met, the service shall fail and a Result(-) shall be returned.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 241

17.3.2.2 Actions

The List Of Output Data parameter shall be copied into the &OutputBuffers field of the Operator Station object.
The MMS server shall invoke the D-Put function to display these fields on the display.

A Result(+) shall be returned.

18 Event Management services

This clause defines no object models. It establishes the interworkings among the objects defined in the next 3
clauses.

This clause specifies the following services:

TriggerEvent
EventNotification
AcknowledgeEventNotification

GetAlarmSummary
GetAlarmEnrollmentSummary
AttachToEventCondition

The Event Management services provide facilities that allow an MMS client to define and manage events at a
VMD and to obtain notifications of event occurrences. These facilities are provided in the VMD model by three
(3) objects and by a set of nineteen (19) services and one (1) service modifier to operate upon these objects. These
objects are the Event Condition object, the Event Action object, and the Event Enrollment object. Each of these
objects models a specific aspect of the state information associated with the management of MMS Events. Only
those events that have the potential of causing the initiation of an EventNotification service request are considered
by this model. If the cspi CBB has been negotiated, an additional object, the Event Condition List, and six (6)
additional services are included. This object and these services provide a convenience for dealing with large
numbers of Event Condition objects.

This clause describes the Event Management model and the event detection and notification services. Clause 19
describes the Event Condition object and the services that act on it. Clause 20 describes the Event Action object
and the services that act on it. The Event Enrollment object and the services that act on it are described in clause
21. The Event Condition List object and its services are described in clause 22.

The Event Condition object models that portion of the state information that is concerned with event detection and
prioritization. It also includes information that assists in the determination of active "alarms".

The Event Action object models that portion of the state information that is concerned with the execution of MMS
services upon the occurrence of an event.

The Event Enrollment object is used to relate the event occurrences of a given Event Condition object to
notifications of these occurrences to a client and, optionally, to the execution of an Event Action. The Event
Enrollment object includes state information that may be used for tracking and coordinating client responses to
alarm event notifications. The Event Enrollment object may also be used for the delayed (conditional) execution
of any confirmed service through the use of the Attach To Event Condition Modifier.

The interrelationship between these three objects is illustrated in Figure 17.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved242

Event Condition
Object

Event Enrollment
(no Event Action)

Event Action
Object

Event Action
Object

Event Enrollment
Object

Event Enrollment
Object

Application
Association

Application
Association

Application
Association

Figure 17 - Relationship Between Event Management Objects

Additional details on the Event Condition, Event Action and Event Enrollment objects, and the services and
modifier that operate upon these objects, are provided in the clauses that follow.

18.1 Event Detection and Notification

An MMS server that supports the Event Management model shall be responsible for servicing events that occur at
the VMD. This requires that the MMS server detect state changes for enabled monitored Event Condition objects,
detect the deletion of referenced Event Condition objects, detect the occurrence of autonomous network-triggered
events or accept requests to trigger network-triggered Event Condition objects, or any combination of the above
actions, and process these changes (or TriggerEvent requests) in order to execute the Procedure for Event
Transition Processing (see 18.1.1) for each client that has enrolled for the state change or for the TriggerEvent
request.

Determination of the value of the &ecState field of an enabled monitored Event Condition object requires
evaluation of the Event Condition object's state on a timely basis following a change in the determined value of the
referenced boolean variable. In the case where the value of the Monitored Variable Reference attribute is equal to
unspecified, the determination of the value of the &ecState field shall be a local matter. The decision as to
when state evaluation is to be accomplished shall be a local (to the MMS server) matter. The &priority field and
the &evaluationInterval field of the Event Condition object are provided as guidance in making this decision.

The procedure for Event Transition processing shall be executed:

a) when a change in the value of the &ecState field (to active or idle) of an enabled monitored Event
Condition object is detected;

b) when the value of the &enabled field of a monitored Event Condition object is changed from true to false
(by use of the AlterEventConditionMonitoring service, or by local means);

c) when a TriggerEvent service indication primitive is received for a network-triggered Event Condition
object;

d) when an autonomous network-triggered event occurs;

e) when the &ecTransitions field of an Event Enrollment object contains the value any-to-deleted and
the value of the &eventCondition field becomes undefined (as a result of deletion of the referenced Event
Condition object); or,

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 243

f) when the &ecTransitions field of an Event Enrollment object contains the value any-to-deleted and
the value of the &monitoredVariable field of a monitored Event Condition object, referenced by the
&eventCondition field of the Event Enrollment object, becomes undefined (as a result of deletion of a
Domain or loss of an application association).

NOTE The action to take when there are multiple transitions from different Event Condition objects to process concurrently,
or when an additional transition of the Event Condition object currently being processed is detected during and prior
to completion of the Procedure for Event Transition Processing, is a local matter. The &priority and &severity
attributes are provided as guidance to the MMS server in this matter, and the ¬ificationLost field is provided as a
means for the MMS server to declare to the client its inability to process completely the detected transitions.

It is possible that due to resource limitations at the MMS server, it may be temporarily impossible to complete a
specific procedure or iteration. In this case, the MMS server may declare the procedure or iteration to have failed,
or may suspend processing of the procedure or iteration until resources become available. The determination of
whether to declare failure or temporarily suspend processing shall be a local matter. The decision criteria used in
making this determination shall be reflected in the CSI as defined in clause 25 of ISO 9506-2.

18.1.1 Procedure for Event transition processing

This procedure shall involve the following actions:

NOTE 1 The mechanisms described in this clause describe the logical operation required for the Procedure for Event
Transition Processing. Implementations may choose other methods of internal operation, as long as the externally
visible characteristics described in this clause are maintained.

a) The Procedure for Event Condition Object Update (see 18.1.2) shall be executed.

Failure of the Procedure for Event Condition Object Update shall result in complete failure of the
Procedure for Event Transition Processing. The value of the ¬ificationLost field for all Event
Enrollment objects referenced by the &EventEnrollments field of the Event Condition object shall, if
possible, be set to true.

b) The Procedure for Event Condition Object Attribute Value Capture (see 18.1.3) shall be executed.

Failure of the Procedure for Event Condition Object Attribute Value Capture shall result in complete
failure of the Procedure for Event Transition Processing. The value of the ¬ificationLost field for all
Event Enrollment objects referenced by the &EventEnrollments field of the Event Condition object shall, if
possible, be set to true.

c) For each enrolled Event Enrollment object referenced by the Event Condition object's &EventEnrollments
field that specifies the current transition of the Event Condition object in the value of its &ecTransitions
field, the Procedure for Event Enrollment Object Attribute Value Capture (see 18.1.4) shall be executed.

Failure of any iteration of the Procedure for Event Enrollment Object Attribute Value Capture shall result
in cancellation of the EventNotification service for the enrolled client. The value of the ¬ificationLost
field of the specific Event Enrollment object shall, if possible, be set to true. If the &EventEnrollments
field of the Event Condition object contains only one reference to an Event Enrollment object, or if it is not
possible to complete one iteration, the entire Procedure for Event Transition Processing shall fail.

d) For each Event Enrollment object referenced by the Event Condition object's &EventEnrollments field and
specifying the current transition of the Event Condition object in the value of its &ecTransitions field, the
Procedure for Event Enrollment Object Update (see 18.1.5) shall be executed.

Failure of any iteration of the Procedure for Event Enrollment object Update shall result in cancellation of
the EventNotification service for the enrolled client. The value of the ¬ificationLost field of the
specific Event Enrollment object shall, if possible, be set to true. If the &EventEnrollments field of the
Event Condition object contains only one reference to an Event Enrollment object, or if it is not possible to
complete one iteration, the entire Procedure for Event Transition Processing shall fail.

e) For each Event Enrollment object referenced by the Event Condition object's &EventEnrollments field,
specifying the current transition of the Event Condition object in the value of its &ecTransitions field and
having a &eventAction field other than undefined, the Procedure for Event Action Execution (see 18.1.6)
shall be executed.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved244

If the value of the &eventAction field of the Event Enrollment object has become undefined as a result of
Domain deletion or loss of an application association, the value of the Success Or Failure parameter of the
EventNotification service request shall be false and the value of the Confirmed Service Error parameter of
the EventNotification service request shall be OBJECT-UNDEFINED.

Failure of an iteration of the Procedure for Event Action Execution shall result in the value false appearing
in the Success Or Failure parameter of the EventNotification service, when issued. Failure of the
Procedure for Event Action Processing shall not otherwise affect the Procedure for Event Transition
Processing.

f) For each Event Enrollment object referenced by the Event Condition object's &EventEnrollments field,
specifying the value of the current transition in its &ecTransitions field, the Procedure for Establishment of
an Application Association for Notification (see 18.1.7) shall be executed.

Failure of an iteration of the Procedure for Establishment of an Application Association for Notification
shall result in cancellation of the EventNotification service for the enrolled client. The value of the
¬ificationLost field of the specific Event Enrollment object shall, if possible, be set to false. If the
&EventEnrollments field of the Event Condition object should contain only one reference to an Event
Enrollment object, or if it is not possible to complete one iteration, the entire Procedure for Event
Transition Processing shall fail.

g) For each Event Enrollment object referenced by the Event Condition object's &EventEnrollments field,
specifying the value of the current transition in its &ecTransitions field, the Procedure for Invoking an
Event Notification (see 18.1.8) shall be executed.

Failure of an iteration of the Procedure for Invoking an Event Notification shall result in cancellation of the
EventNotification service for the enrolled client. The value of the ¬ificationLost field of the specific
Event Enrollment object shall, if possible, be set to false. If the &EventEnrollments field of the Event
Condition object contains only one reference to an Event Enrollment object, or if it is not possible to
complete one iteration, the entire Procedure for Event Transition Processing shall fail.

NOTE 2 The actual invocation of the EventNotification service (including the execution of the applicable Event Action, if
any) should occur as the captured information is processed, on a timely basis, in the sequence (within a given
priority) in which it was captured.

Each of the above procedures shall be executed as an atomic entity, to the extent that a specific procedure shall
succeed or fail as a discrete element or, where a procedure includes multiple iterations, each iteration shall succeed
or fail as a discrete element. Failure of a specific procedure or iteration is defined as the inability to successfully
complete the procedure, for any reason.

18.1.2 Procedure for Event Condition object update

This procedure shall be executed following determination of a change in the value of the &ecState field of the
Event Condition object. The procedure involves the following actions:

a) Capture the time of determination (time of day or Time Sequence Identifier) of the new value of the
&ecState field.

b) Alter the Event Condition object's &ecState field to the new state, as required.

c) If the Event Condition object is a monitored Event Condition object and the new state is active, replace
the &timeToActive field with the captured time (date and time of day or Time Sequence Identifier).

d) If the Event Condition object is a monitored Event Condition object and the new state is idle, replace the
&timeToIdle field with the captured time (date and time of day or Time Sequence Identifier).

18.1.3 Procedure for Event Condition object attribute value capture

This procedure shall be executed to capture the values of the attributes of the Event Condition object that are
required in order to issue the EventNotification service. The values of the following attributes of the Event
Condition object shall be captured:

a) the &name field of the Event Condition object;

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 245

b) the value of the &ecState field;

c) the value of the &severity field.

18.1.4 Procedure for Event Enrollment object attribute value capture

This procedure shall be executed for each Event Enrollment object specifying the value of the current transition in
the &ecTransitions field. The values of the following attributes of the Event Enrollment object shall be captured:

a) the &name field of the Event Enrollment object;

b) the &aAssociation field;

c) the ¬ificationLost field;

d) the &eventAction field;

e) the &clientApplication field;

f) the &aaRule field.

The time of determination captured during the Procedure for Event Condition Object Update and the attribute
values captured from the Event Condition and Event Enrollment objects shall be retained until the Procedure for
Invoking the Event Notification Service (see 18.1.8) is completed.

18.1.5 Procedure for Event Enrollment object update

a) If the Event Enrollment object is a notification Event Enrollment object:

1) if the Event Condition object's new &ecState field is active, replace the Event Enrollment
object's &timeActiveAck field with the value undefined;

2) if the Event Condition object's new &ecState field is idle, replace the Event Enrollment object's
&timeIdleAck field with the value undefined;

b) if the Event Enrollment object is a modifier Event Enrollment object, continue processing of the
Transaction object as defined in 7.3.3.

NOTE Transition processing should not wait for processing of the Transaction object.

18.1.6 Procedure for Event Action execution

The MMS server shall create a Transaction object (see 7.3.1) containing the following elements:

a) a unique locally assigned value for the &invokeID field;

b) a &Pre-ExecutionModifiers field equal to the Event Action object's &modifiers field;

c) a ¤tModifier field initialized to refer to the first modifier in the &Pre-ExecutionModifiers;

d) a &confirmedService-Request field equal to the value of the Event Action object's
&confirmedServiceRequest field;

e) a &Post-executionModifiers field that is empty;

f) a &cancelable field initialized to false.

A reference to this Transaction object shall be added to the &EATransitions field of the VMD. The procedure for
transaction processing (see 7.3.3) shall be executed. The result of the execution of this procedure shall be used to
supply the value of the Success Or Failure parameter in the Event Notification request service primitive and either
the Confirmed Service Response parameter or the Confirmed Service Error parameter (depending on success or
failure of the confirmed service) of the Action Result parameter of the EventNotification service request.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved246

NOTE Transaction processing results in the consumption of resources and can potentially result in error conditions related to
insufficient resources if care is not taken during application design. In addition, the Transaction object created, as a
result of an Event Action execution, reduces the number of available outstanding confirmed service invocations, as
limited by the maximum number of services outstanding parameters negotiated through the Initiate service as
described in 8.2.1.2. If this limit is exceeded, the result of the Event Action (upon attempt to create the Transaction
object) may be a service error specifying a resource problem.

18.1.7 Procedure for Establishment of an Application Association for notification

The application association to be used for transmission of EventNotification service primitives issued as a result of
a notification Event Enrollment shall be established as specified below.

a) If the value of the &duration field of the Event Enrollment object is equal to current, the application
association specified by the &aAssociation field of the Event Enrollment object shall be used for invoking
the EventNotification service. If this application association terminates for any reason, the Event
Enrollment object, and all pending event notifications for it, shall be deleted.

b) If the &duration field of the Event Enrollment object is equal to permanent, the application association
to be used shall be determined as follows:

1) The application association identified by the &aAssociation field of the Event Enrollment object
shall be used if:

i) the application association still exists;

ii) the application association is with the client specified by the &clientApplication field of the
Event Enrollment object;

iii) the client supports reception of the EventNotification service.

2) Otherwise, any currently active application association between the MMS server and the enrolled
client shall be used, as long as reception of the EventNotification service by the enrolled client has
been negotiated for the application association.

3) If no suitable application association exists between the MMS server and the enrolled client, the
MMS server shall attempt to establish a suitable application association with the enrolled client. If
this succeeds, the newly established application association shall be used.

If it is not possible to establish an application association for the Event Enrollment, the MMS server may attempt
to retry the establishment process on a periodic basis, or it may delete the Event Enrollment object and all pending
event notifications requested by it. The action to be taken shall be a local decision of the MMS server.

NOTE Deletion of the Event Enrollment object should be performed as a last resort.

18.1.8 The Procedure for invoking an Event Notification

This procedure shall be executed in order to process the captured information and issue an EventNotification
service request.

After determining the result of the execution of the Event Action (if applicable, see 18.1.6), and using the
application association with the client (see 18.1.7), the EventNotification service request primitive shall be issued.

Following successful completion of the Procedure for Invoking an Event Notification, the value of the
¬ificationLost field of the specific Event Enrollment object shall be set to false. If necessary, the value of the
&ackState field shall be updated.

NOTE There is an implied time skew between the time in the notification and the time of the values reported by the Event
Action result. Implementations should attempt to minimize this interval.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 247

18.2 TriggerEvent service

The TriggerEvent service is used by an MMS client to request that an MMS server trigger an event associated with
a network-triggered Event Condition object.

18.2.1 Structure

The structure of the component service primitives is shown in Table 100.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Event Condition Name
 Priority

Result(+)

Result(-)
 Error Type

M
M
U

M(=)
M(=)
U(=)

S

S
M

S(=)

S(=)
M(=)

Table 100 - TriggerEvent service

18.2.1.1 Argument

This parameter shall convey the parameters of the TriggerEvent service request.

18.2.1.1.1 Event Condition Name

This parameter, of type Object Name, shall specify the name of the network-triggered Event Condition object to
be triggered.

18.2.1.1.2 Priority

If included, this parameter, of type Priority, shall contain a replacement value for the Event Condition object's
&priority field. A change in priority shall take effect immediately, prior to execution of event transition
processing.

If this parameter is omitted, the &priority field of the Event Condition object shall not be changed.

NOTE Depending on the particular use of priority by an implementation, it is possible that assignment of increased priority
may result in a period during which EventNotification requests primitives are not sequentially ordered with respect to
time of occurrence.

18.2.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

18.2.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

18.2.2 Service Procedure

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved248

18.2.2.1 Preconditions

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the VMD are satisfied for the service class = LOAD.

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the Event Condition object are satisfied for the service class = LOAD.

The MMS server shall verify that the Event Condition object exists, and that the &ecClass field of this object has
the value network-triggered.

If these conditions are not satisfied, the service shall fail and a Result(-) response shall be returned.

18.2.2.2 Actions

If the Priority parameter is present in the service request, the &priority field of the Event Condition object shall be
changed to the value of the Priority parameter.

A Result(+) response shall be issued.

After the response is issued, the procedure for event transition processing (see 18.1.1) shall be executed for the
specified Event Condition object.

18.3 EventNotification service

The EventNotification service is used by an MMS server to notify an enrolled client of the occurrence of a state
transition associated with an Event Condition object. The EventNotification service is an unconfirmed service.

NOTE For this service, the MMS server issues the request primitive (see 26.2.1.1).

18.3.1 Structure

The structure of the component service primitives is shown in Table 101.

 Parameter Name Req Ind CBB

Argument
 Event Enrollment Name
 Event Condition Name
 Severity
 Current State
 Transition Time
 Notification Lost
 Alarm Acknowledgement Rule
 Action Result
 Event Action Name
 Success or Failure
 Confirmed Service Response
 Confirmed Service Error
 Display Enhancement
 String
 Index
 No Enhancement

M
M
M
M
C
M
M
C
C
M
M
S
S
M
S
S
S

M(=)
M(=)
M(=)
M(=)
C(=)
M(=)
M(=)
C(=)
C(=)
M(=)
M(=)
S(=)
S(=)
M(=)
S(=)
S(=)
S(=)

cspi
des
dei

Table 101 - EventNotification service

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 249

18.3.1.1 Argument

This parameter shall convey the parameters of the EventNotification service.

18.3.1.1.1 Event Enrollment Name

This parameter, of type Object Name, shall contain the value of the &name field of the Event Enrollment object
for which this notification is invoked.

18.3.1.1.2 Event Condition Name

This parameter, of type Object Name, shall contain the value of the &name field of the Event Condition object
referenced by the &eventCondition field of the Event Enrollment object.

18.3.1.1.3 Severity

This parameter, of type integer, shall contain the value of the &severity field of the Event Condition object
referenced by the &eventCondition field of the Event Enrollment object.

18.3.1.1.4 Current State

This parameter, of type EC-State, shall contain the value of the &ecState attribute, following event transition
processing, of the Event Condition object referenced by the &eventCondition field of the Event Enrollment object.
If the EventNotification is being sent as a result of the transition any-to-deleted of the referenced Event
Condition object, this parameter shall be omitted. This parameter shall also be omitted if the referenced Event
Condition object has become unavailable, for example, as a result of deletion of a Domain or loss of an application
association.

18.3.1.1.5 Transition Time

This parameter shall contain the time (date and time of day or Time Sequence Identifier) at which the Event
Condition object transition was detected.

18.3.1.1.6 Notification Lost

This parameter, of type boolean, shall contain the value of the Event Enrollment object's ¬ificationLost field at
the time of the Event Condition object's transition. If true, it indicates that one or more EventNotification requests
specified for previous Event Condition object transitions associated with this Event Enrollment object have not
been issued due to resource limitations in the issuing system. Following successful completion of an event
notification, this parameter shall be set to the value false.

18.3.1.1.7 Alarm Acknowledgement Rule

This parameter, of type Alarm-Ack-Rule, shall only be included for EventNotification service requests resulting
from an Event Condition object that has a value of the &ecClass field of monitored. It shall contain the value
of the Event Enrollment object's &aaRule field.

This parameter shall be omitted for EventNotification service requests resulting from a network-triggered Event
Condition object.

18.3.1.1.8 Action Result

This parameter shall be included for EventNotification service requests resulting from Event Enrollment objects
that reference an Event Action object. Otherwise, it shall be omitted. If included, it shall contain the result of
execution of the service request specified by the &confirmedServiceRequest field of the Event Action object. If
the Event Action object has become unavailable, for example as a result of deletion of a Domain or loss of an
application association, this parameter shall not be included. This parameter shall also not be included if the
EventNotification is being sent as a result of the transition any-to-deleted of the referenced Event Condition
object. The component parameters are specified as follows.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved250

18.3.1.1.8.1 Event Action Name

This parameter, of type Object Name, shall contain the value of the &name field of the Event Action object
referenced by the &eventAction field in the Event Enrollment object.

18.3.1.1.8.2 Success Or Failure

This boolean parameter shall indicate whether the execution of the confirmed service specified in the Event Action
object's &confirmedServiceRequest field succeeded (true) or failed (false). Depending on the value of this
parameter, one of the following parameters shall be selected.

18.3.1.1.8.3 Confirmed Service Response

This parameter shall contain the value of the Result(+) parameter resulting from the successful execution of the
confirmed service specified in the &confirmedServiceRequest field of the Event Action object. It shall be present
if the Success Or Failure parameter is true.

18.3.1.1.8.4 Confirmed Service Error

This parameter shall contain the value of the Result(-) parameter resulting from the failure in execution of the
confirmed service. It shall be present if the Success Or Failure parameter is false.

18.3.1.1.9 Display Enhancement

This parameter shall be present only if the cspi CBB has been negotiated. If the &displayEnhancement field is
present in the Event Enrollment object and its value is not none, this parameter shall indicate the value of the
&displayEnhancement field of the Event Enrollment object. Otherwise, this parameter shall be the value of the
&displayEnhancement field of the Event Condition object. Depending on the value of this parameter, one of the
following parameters shall be selected.

18.3.1.1.9.1 String

This parameter, of type character string, is the string form of the Display Enhancement parameter.

18.3.1.1.9.2 Index

This parameter, of type integer, is the numeric form of the Display Enhancement parameter.

18.3.1.1.9.3 No Enhancement

This parameter, of type NULL, specifies that no Display Enhancement is present.

18.3.2 Service Procedure

The MMS server shall issue an EventNotification request primitive as part of the Procedure for Event Transition
processing (see 18.1.1). This International Standard does not specify a procedure for receiving the
EventNotification service. The use of this service is application determined. However, an MMS-user receiving a
EventNotification.indication primitive may choose to acknowledge the receipt of the notification (see 18.4). An
EventNotification.request shall not be sent if the peer MMS-user did not indicate support of the EventNotification
service in the Services Supported parameter of the Initiate service.

NOTE The MMS server, due to failure to receive a required acknowledgement or other local reason, may, at its discretion,
repeat an EventNotification (in a new service invocation) for any Event Enrollment object that is awaiting a required
acknowledgement. The criteria for deciding to repeat an EventNotification is a local matter.

18.4 AcknowledgeEventNotification service

The AcknowledgeEventNotification service is used by an MMS client to notify the MMS server that its user
(usually a human operator) has acknowledged an EventNotification received from the MMS server.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 251

18.4.1 Structure

The structure of the component service primitives is shown in Table 102.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Event Enrollment Name
 Acknowledged State
 Time Of Acknowledged Transition

Result(+)

Result(-)
 Error Type

M
M
M
M

M(=)
M(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 102 - AcknowledgeEventNotification service

18.4.1.1 Argument

This parameter shall convey the parameters of the AcknowledgeEventNotification service request.

18.4.1.1.1 Event Enrollment Name

This parameter, of type Object Name, shall be equal to the Event Enrollment Name parameter of the
EventNotification that is being acknowledged.

18.4.1.1.2 Acknowledged State

This parameter, of type EC-State, shall be equal to the Current State parameter of the EventNotification that is
being acknowledged.

18.4.1.1.3 Time Of Acknowledged Transition

This parameter, expressed as a date and time of day or Time Sequence Identifier, shall be equal to the Transition
Time parameter of the EventNotification that is being acknowledged.

18.4.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

18.4.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

18.4.2 Service Procedure

18.4.2.1 Preconditions

The MMS server shall verify that:

a) all the conditions in the Access Control List object referenced by the &accessControl field of the VMD are
satisfied for the service class = LOAD.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved252

b) all the conditions in the Access Control List object referenced by the &accessControl field of the Event
Enrollment object are satisfied for the service class = LOAD.

If any of these conditions is not satisfied, the service shall fail and a Result(-) response shall be returned.

18.4.2.2 Actions

The Procedure For Acknowledgement of Event Notifications (see 18.4.2.3) shall be executed. The MMS server
shall issue a Result(+) response.

18.4.2.3 Procedure For Acknowledgement of Event Notifications

a) If the attributes of the Event Enrollment object indicate that an acknowledgement for the specified state
change (both state and time) has already been received, this procedure shall be skipped.

NOTE This may occur due to the possibility of multiple invocations of the EventNotification being issued by the MMS
server to multiple clients.

b) Otherwise, if the Acknowledged State parameter is not equal to the current value of the &ecState field of
the Event Condition object referenced by the &eventCondition field of the Event Enrollment object, or if
the Time Of Acknowledged Transition parameter is not equal to the current value of the &timeToActive
field or the &timeToIdle field (as applicable to the Acknowledged State) of the Event Condition object
referenced by the acknowledged Event Enrollment object, this procedure shall be skipped.

c) Otherwise, if the value of the Acknowledged State parameter is ACTIVE, the acknowledged Event
Enrollment object's &timeActiveAck field shall be replaced by the current time (date and time of day or
Time Sequence Identifier).

d) Otherwise, if the value of the Acknowledged State parameter is IDLE, the acknowledged Event Enrollment
object's &timeIdleAck field shall be replaced by the current time (date and time of day or Time Sequence
Identifier).

e) If the value of the &aaRule field of the Event Enrollment object is not equal to simple or none, and the
acknowledged transition corresponds to a required acknowledgement, the requirement shall be considered
satisfied.

18.5 GetAlarmSummary service

The GetAlarmSummary service is used by an MMS client to request summary information from the MMS server
about the current status of monitored Event Condition objects and related attributes of their referenced notification
Event Enrollment objects.

18.5.1 Structure

The structure of the component service primitives is shown in Table 103.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 253

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Enrollments Only
 Active Alarms Only
 Acknowledgement Filter
 Severity Filter
 Most Severe
 Least Severe
 Continue After

Result(+)
 List Of Alarm Summary
 Event Condition Name
 Severity
 Current State
 Unacknowledged State
 Display Enhancement
 String
 Index
 No Enhancement
 Time of Last Transition to Active
 Time of Last Transition to Idle
 More Follows

Result(-)
 Error Type

M
M
M
M
M
M
M
U

M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
U(=)

S
M
M
M
M
M
C
S
S
S
C
C
M

S
M

S(=)
M(=)
M(=)
M(=)
M(=)
M(=)
C(=)
S(=)
S(=)
S(=)
C(=)
C(=)
M(=)

S(=)
M(=)

cspi
des
dei

Table 103 - GetAlarmSummary service

18.5.1.1 Argument

This parameter shall convey the parameters of the GetAlarmSummary service request.

18.5.1.1.1 Enrollments Only

This parameter, of type boolean, shall provide a means of restricting the set of Event Condition objects that are to
be summarized. When true, the summary shall include only those monitored Event Condition objects that contain
(in the &EventEnrollments field) a reference to one or more notification Event Enrollment objects that specify (in
the value of the &clientApplication field) the MMS client requesting the GetAlarmSummary service.

18.5.1.1.2 Active Alarms Only

This parameter, of type boolean, shall provide a means of restricting the Event Condition objects that are to be
summarized. When true, only those monitored Event Condition objects that have the value of the &ecState
field equal to active shall be included. When false, monitored Event Condition objects shall be summarized
without regard to the value of the &ecState field.

18.5.1.1.3 Acknowledgement Filter

This parameter shall provide a means of restricting the Event Condition objects and Event Enrollment objects that
are to be summarized. It may take any of three values:

NOTE In the following discussions, an unacknowledged event enrollment is a notification Event Enrollment object whose
&ackState field is noAckI or noAckA, and an acknowledged event enrollment is a notification Event Enrollment
object whose &ackState field is acked.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved254

a) NOT-ACKED - the GetAlarmSummary response shall contain reports only for those monitored Event
Condition objects for which the &EventEnrollments field contains a reference to at least one
unacknowledged Event Enrollment.

b) ACKED - the GetAlarmSummary response contain reports only for those monitored Event Condition
objects for which all references contained in the &EventEnrollments field are to acknowledged Event
Enrollments.

c) ALL - the GetAlarmSummary response contain monitored Event Condition objects without regard to
the acknowledgement status of any referenced notification Event Enrollment objects.

18.5.1.1.4 Severity Filter

This parameter, containing two integers, is provided as a means of restricting the summary to monitored Event
Condition objects having specific severity. Only those Event Condition objects for which the value of the
&severity field is between Most Severe and Least Severe, inclusive, shall be summarized.

18.5.1.1.5 Continue After

This parameter shall be included if requesting continuation of a partially completed alarm summary, as indicated
by a value of true in the More Follows parameter in the most recently received GetAlarmSummary confirm
primitive. Otherwise, this parameter shall be omitted.

This parameter, of type Object Name, shall be equal to the Event Condition Name parameter of the last Alarm
Summary entry in the List Of Alarm Summary parameter of the GetAlarmSummary confirm service primitive for
which continuation is requested.

18.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

18.5.1.2.1 List Of Alarm Summary

This parameter shall contain a list of zero or more Alarm Summary parameters, each providing the summary of a
single monitored Event Condition object satisfying the criteria of the GetAlarmSummary service indication.

18.5.1.2.1.1 Event Condition Name

This parameter, of type Object Name, shall contain the value of the &name field of the monitored Event Condition
object.

18.5.1.2.1.2 Severity

This parameter, of type integer, shall contain the value of the &severity field of the monitored Event Condition
object.

18.5.1.2.1.3 Current State

This parameter, of type EC-State, shall contain the current value of the &ecState field of the monitored Event
Condition object.

18.5.1.2.1.4 Display Enhancement

This parameter shall be present only if the cspi CBB has been negotiated. If the &displayEnhancement field is
present in the Event Enrollment object and its value is not undefined, this parameter shall indicate the value of
the &displayEnhancement field of the Event Enrollment object. Otherwise, this parameter shall be the value of the
&displayEnhancement field of the Event Condition object. Depending on its value, one of the following
parameters shall be selected.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 255

18.5.1.2.1.4.1 String

This parameter, of type character string, is the string form of the Display Enhancement parameter.

18.5.1.2.1.4.2 Index

This parameter, of type integer, is the numeric form of the Display Enhancement parameter.

18.5.1.2.1.4.3 No Enhancement

This parameter, of type NULL, specifies that no Display Enhancement is present.

18.5.1.2.1.5 Unacknowledged State

This parameter shall contain a value indicating the state of the Event Enrollment objects that reference this Event
Condition object with respect to event notification acknowledgments. This parameter shall contain one of the
following values:

a) NONE - indicates that no Event Enrollment object has an acknowledgement outstanding.

b) ACTIVE - indicates that at least one Event Enrollment object has an acknowledgement outstanding for the
most recent transition to the active state.

c) IDLE - indicates that at least one Event Enrollment object has an acknowledgement outstanding for the
most recent transition to the idle state.

d) BOTH - indicates that at least one Event Enrollment object has an acknowledgement outstanding for the
most recent transition to the active state and at least one Event Enrollment object has an
acknowledgement outstanding for the most recent transition to the idle state.

18.5.1.2.1.6 Time Of Last Transition To Active

This parameter, expressed as a date and time of day or Time Sequence Identifier, shall contain the value of the
&timeToActive field of the monitored Event Condition object, unless it has value undefined, in which case this
parameter shall be omitted.

18.5.1.2.1.7 Time Of Last Transition To Idle

This parameter, expressed as a date and time of day or Time Sequence Identifier, shall contain the value of the
&timeToIdle field of the monitored Event Condition object, unless it has value undefined, in which case this
parameter shall be omitted.

18.5.1.2.2 More Follows

The More Follows parameter, of type boolean, shall be true if this response does not contain all of the alarm
summaries requested and a continuation request is needed to obtain the additional summaries. Otherwise, it shall
be false.

18.5.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

18.5.2 Service Procedure

The MMS server shall prepare a list of monitored Event Condition objects for which the following conditions hold
true:

a) the value of the &ecClass field is monitored;

b) the value of the &alarmSummaryReports field is true;

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved256

c) the filter criteria described in the Argument parameter are satisfied.

The list shall be in the collation sequence specified in 5.4.2.

The MMS server shall return a Result(+) response containing the List Of Alarm Summary parameter, constructed
from zero or more monitored Event Condition objects from this list, and the More Follows parameter.

If the request contains the Continue After parameter, the List of Alarm Summary parameter shall begin with the
first monitored Event Condition object after the monitored Event Condition object specified by the value of this
parameter.

The number of monitored Event Condition objects that may be summarized in the List of Alarm Summary
parameter may be limited by local restrictions. If the response does not contain all of the requested alarm
summaries, the More Follows parameter shall be set to true. Otherwise, the More Follows parameter shall be set
to false.

If the More Follows parameter is true, there shall be at least one Event Condition object reported in the List of
Alarm Summary parameter.

18.6 GetAlarmEnrollmentSummary service

The GetAlarmEnrollmentSummary service is used by an MMS client to request summary information from the
MMS server about the current alarm status of notification Event Enrollment objects and related attributes of their
referenced monitored Event Condition objects.

18.6.1 Structure

The structure of the component service primitives is shown in Table 104.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 257

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Enrollments Only
 Active Alarms Only
 Acknowledgement Filter
 Severity Filter
 Most Severe
 Least Severe
 Continue After

Result(+)
 List Of Enrollment Summary
 Event Enrollment Name
 Client Application
 Severity
 Current State
 Display Enhancement
 String
 Index
 No Enhancement
 Notification Lost
 Alarm Acknowledgement Rule
 Enrollment State
 Last Transition to Active
 Time Active Acknowledged
 Last Transition to Idle
 Time Idle Acknowledged
 More Follows

Result(-)
 Error Type

M
M
M
M
M
M
M
U

M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
M(=)
U(=)

S
M
M
C
M
M
M
S
S
S
M
M
C
C
C
C
C
M

S
M

S(=)
M(=)
M(=)
C(=)
M(=)
M(=)
M(=)
S(=)
S(=)
S(=)
M(=)
M(=)
C(=)
C(=)
C(=)
C(=)
C(=)
M(=)

S(=)
M(=)

cspi
des
dei

Table 104 - GetAlarmEnrollmentSummary service

18.6.1.1 Argument

This parameter shall convey the parameters of the GetAlarmEnrollmentSummary service request.

18.6.1.1.1 Enrollments Only

This parameter, of type boolean, shall provide a means of restricting the set of Event Enrollment objects to be
summarized. When true, only those notification Event Enrollment objects for which the value of the
&clientApplication field specifies the requesting MMS client shall be summarized. When false, notification Event
Enrollment objects shall be summarized without regard to the value of the &clientApplication field.

18.6.1.1.2 Active Alarms Only

This parameter, of type boolean, shall provide a means of restricting the notification Event Enrollment
objects to be summarized. When true, only those notification Event Enrollment objects that reference an
Event Condition object whose &ecState field value is active shall be included. When false, notification
Event Enrollment objects shall be summarized without regard to state of the Event Condition object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved258

18.6.1.1.3 Acknowledgement Filter

This parameter, of type integer, shall provide a means of restricting the Event Enrollment objects to be
summarized. It may take any of three values:

NOTE In the following discussions, an unacknowledged Event Enrollment is a notification Event Enrollment object whose
&ackState field has the value noAckI or the noAckA, and an acknowledged Event Enrollment is a notification
Event Enrollment object whose &ackState field has the value acked.

a) NOT-ACKED - requests that the GetAlarmEnrollmentSummary response contain only reports for
unacknowledged Event Enrollments;

b) ACKED - requests that the GetAlarmEnrollmentSummary response contain only reports for acknowledged
Event Enrollments;

c) ALL - requests that the GetAlarmEnrollmentSummary response contain reports of Event Enrollments for
all notification Event Enrollment objects without regard to acknowledgement status.

18.6.1.1.4 Severity Filter

This parameter, containing two integers, is provided as a means of restricting the summary to notification
Event Enrollment objects referencing Event Condition objects having specific severity. Only notification
Event Enrollment objects referencing Event Condition objects for which the value of the &severity field is
between Most Severe and Least Severe, inclusive, shall be summarized.

18.6.1.1.5 Continue After

This parameter, of type Object Name, shall be included if requesting continuation of a partially completed alarm
enrollment summary, as indicated by a value of true in the More Follows parameter in the most recently received
GetAlarmEnrollmentSummary confirm primitive. Otherwise, this parameter shall be omitted. When included,
this parameter shall contain the value of the last Event Enrollment Name parameter included in the List Of Alarm
Enrollment Summary response primitive preceding this request.

18.6.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

18.6.1.2.1 List Of Enrollment Summary

This parameter shall contain a list of zero or more Alarm Enrollment Summary parameters, each providing the
summary of a single notification Event Enrollment object satisfying the criteria of the
GetAlarmEnrollmentSummary service indication.

18.6.1.2.1.1 Event Enrollment Name

This parameter, of type Object Name, shall contain the value of the &name field of the notification Event
Enrollment object.

18.6.1.2.1.2 Client Application

This parameter, of type Application Reference, shall contain the value of the &clientApplication field of the
notification Event Enrollment object. If this field specifies the requesting MMS client, this parameter shall
be omitted.

18.6.1.2.1.3 Severity

This parameter, of type integer, shall contain the value of the &severity field of the Event Condition object
referenced by the &eventCondition field of the Event Enrollment object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 259

18.6.1.2.1.4 Current State

This parameter, of type EC State, shall contain the value of the &ecState field of the Event Condition object
referenced by the &eventCondition field of the Event Enrollment object.

18.6.1.2.1.5 Display Enhancement

This parameter shall be present only if the cspi CBB has been negotiated. If the &displayEnhancement field is
present in the Event Enrollment object and its value is not undefined, this parameter shall indicate the value of
the &displayEnhancement field of the Event Enrollment object. Otherwise, this parameter shall be the value of the
&displayEnhancement field of the Event Condition object. Depending on its value, one of the following
parameters shall be selected.

18.6.1.2.1.5.1 String

This parameter, of type character string, is the string form of the Display Enhancement parameter.

18.6.1.2.1.5.2 Index

This parameter, of type integer, is the numeric form of the Display Enhancement parameter.

18.6.1.2.1.5.3 No Enhancement

This parameter, of type NULL, specifies that no Display Enhancement is present.

18.6.1.2.1.6 Notification Lost

This boolean parameter shall contain the value of the ¬ificationLost field of the Event Enrollment object.

18.6.1.2.1.7 Alarm Acknowledgement Rule

This parameter, of type AlarmAckRule, shall contain the value of the &aaRule field of the Event Enrollment
object.

18.6.1.2.1.8 Enrollment State

This parameter, of type EE-State, depends on the value of the &aaRule field of the Event Enrollment object and
shall reflect the value of the &ecState field of the Event Condition object referenced by the &eventCondition field
of the Event Enrollment object and the value of the &ackState field of the Event Enrollment object. The value of
this parameter is prescribed in 21.5.1.2.5.

18.6.1.2.1.9 Last Transition To Active

This parameter, expressed as a date and time of day or Time Sequence Identifier, shall contain the value of the
&timeToActive field of the Event Condition object referenced by the &eventCondition field of the Event
Enrollment. If the &timeToActive field has the value undefined, this parameter shall be omitted.

18.6.1.2.1.10 Time Active Acknowledged

This parameter, expressed as a date and time of day or Time Sequence Identifier, shall contain the value of the
&timeActiveAck field of the Event Enrollment object. If the &timeActiveAck field has the value undefined,
this parameter shall be omitted.

18.6.1.2.1.11 Last Transition To Idle

This parameter, expressed as a date and time of day or Time Sequence Identifier, shall contain the value of the
&timeToIdle field of the Event Condition object referenced by the &eventCondition field of the Event Enrollment.
If the &timeToIdle field has the value undefined, this parameter shall be omitted.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved260

18.6.1.2.1.12 Time Idle Acknowledged

This parameter, expressed as a date and time of day or Time Sequence Identifier, shall contain the value of the
&timeIdleAck field of the Event Enrollment object. If the &timeIdleAck field has the value undefined, this
parameter shall be omitted.

18.6.1.2.2 More Follows

The More Follows parameter, of type boolean, shall have a value true if this response does not contain all of the
alarm enrollment summaries requested and a continuation request is required to obtain the additional summaries.
Otherwise, the value shall be false.

18.6.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

18.6.2 Service Procedure

The MMS server shall prepare a list of Event Enrollment objects for inclusion in the List Of Alarm Enrollment
Summary parameter. This list shall be prepared by (1) assembling a list of all monitored Event Condition
objects, ordered by the collation sequence specified in 5.4.2. For each such Event Condition the notification
Event Enrollment objects that satisfy the specified filter criteria and whose &aaRule field is not equal to none
shall constitute the members of the list. For each Event Condition object, the Event Enrollment objects shall be
ordered by the collation sequence specified in 5.4.2. The MMS server shall return a Result(+) response containing
the List Of Alarm Enrollment Summary parameter constructed from this list and the More Follows parameter.

If the request contains the Continue After parameter, the List of Alarm Enrollment Summary parameter shall begin
with the first notification Event Enrollment object after the notification Event Enrollment object specified by the
value of this parameter.

The number of notification Event Enrollment objects that may be summarized in the List of Alarm Enrollment
Summary parameter may be limited by local restrictions. If the response does not contain all of the requested
alarm summaries, the More Follows parameter shall be set to true. Otherwise, the More Follows parameter shall
be set to false.

If the More Follows parameter is true, there shall be at least one Event Enrollment object reported in the List of
Alarm Enrollment Summary parameter.

18.7 Attach To Event Condition Modifier

The Attach To Event Condition modifier is used by an MMS client to request that the MMS server delay execution
of a requested service's service procedure until a specified Event Condition object undergoes any one of a
specified set of state transitions.

18.7.1 Structure

The structure of the Attach To Event Condition modifier parameter is shown in Table 105.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 261

 Parameter Name Req Ind

Attach To Event Condition
 Event Enrollment Name
 Event Condition Name
 Causing Transitions
 Acceptable Delay

S
M
M
M
U

S(=)
M(=)
M(=)
M(=)
U(=)

Table 105 - Attach To Event Condition Modifier

18.7.1.1 Attach To Event Condition

The Attach To Event Condition parameter is provided as an parameter of the List of Modifier parameter for each
confirmed service request (see 5.6). The sub-parameters of the Attach To Event Condition modifier are specified
as follows.

18.7.1.1.1 Event Enrollment Name

This parameter, of type Object Name, shall contain the value of the &name field used to identify the modifier
Event Enrollment object. This name shall be unique among all other &name fields of Event Enrollment objects of
identical scope at the VMD.

18.7.1.1.2 Event Condition Name

This parameter, of type Object Name, shall specify the &name field of the Event Condition object that shall be the
&eventCondition field of the modifier Event Enrollment object.

18.7.1.1.3 Causing Transitions

This parameter, of type Transitions, shall specify the set of transitions of the Event Condition object that are to
cause processing of the service request to continue.

18.7.1.1.4 Acceptable Delay

This optional parameter, of type integer, shall indicate the value of the &remainingDelay field of the Event
Enrollment object. If this parameter is not present, the value of &remainingDelay shall be forever.

If more than one Attach To Event Condition modifier has been specified for this service request, this parameter
applies only to the modifier for which it is a parameter. Each such modifier may have different value for this
parameter.

18.7.2 Service Procedure

18.7.2.1 Preconditions

If the Acceptable Delay parameter is present and its value is zero, a Result(-) response shall be issued.

18.7.2.2 Action Step 1

The MMS server shall create a modifier Event Enrollment object initialized as specified below and shall place
a reference to this Event Enrollment object in the &EventEnrollments field of the specified Event Condition
object. No further action shall be taken toward execution of the indicated service's service procedure until the
specified Event Condition object undergoes one of the specified state transitions.

The created Event Enrollment object shall be initialized as follows:

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved262

a) The &name field of the Event Enrollment object shall be set to the value provided in the Event Enrollment
Name parameter.

b) The &eeClass field shall be initialized to the value modifier.

c) The &eventCondition field shall be initialized to reference the Event Condition object identified by the
value of the Event Condition Name parameter.

d) The &ecTransitions field shall be initialized to the value of the Causing Transitions parameter.

e) The &invokeID field shall be initialized to contain the &invokeID field of the Transaction object that
carries this service request (see 7.3.1).

f) If no value has been provided for the Acceptable Delay parameter, the &remainingDelay field shall be set
to the value forever. If a value has been provided, the &remainingDelay field shall be initialized to the
value of the Acceptable Delay parameter and the timer function activated.

g) The &aAssociation field shall be initialized to identify the application association that was used to execute
this service.

18.7.2.3 Action Step 2

If the timer function had been activated and the value of the &remainingDelay field reaches zero, the following
actions shall be performed:

a) The timer shall be deactivated.

b) The MMS server shall return a Result(-) response for the modified service with the error parameter
indicating expiration of acceptable delay;

c) The procedure for Event Enrollment Deletion (see 21.3.3) shall be executed.

18.7.2.4 Action Step 3

If a specified state transition of the Event Condition object is detected, the following actions shall be performed:

a) The service request shall be released for continued execution of its service procedure (see 7.3.3);

b) The Event Enrollment object shall be deleted according to the Procedure for Event Enrollment Deletion
(see 21.3.3).

18.7.3 Procedure for Cancellation of Modified Service

This procedure amends the service procedure for the Cancel service if a service request attached to an Event
Condition object is to be cancelled. The procedure is as follows:

a) remove the reference to the Event Enrollment object from the &EventEnrollments field of the Event
Condition object referenced by the &eventCondition field of the Event Enrollment object;

b) execute the service procedure specified for the Cancel service; then

c) delete the Event Enrollment object using the Procedure For Event Enrollment Deletion (see 21.3.3).

NOTE Cancellation of the modified service results in a negative response being issued for the service invocation.

18.8 Conformance Requirements Unique to Event Management

The Event Management Services define parameter and time-support requirements for the MMS server. These
requirements are described below.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 263

18.8.1 Parameter Conformance Building Blocks

See 8.1.3.15 for a description of the cei parameter CBB.

18.8.2 Support for Time

The Configuration and Initialization Statement (CSI) for an implementation shall state the level of support for time
(date and time of day, or Time Sequence Identifier).

Support for the Time Sequence Identifier implies that an implementation will be capable of assigning a sequence
number to all attributes that represent time, but that real time in terms of date and time of day is not supported.
The relationship of the Time Sequence Identifier to date and time of day shall be for local determination.

Support for date and time of day implies that an implementation maintains a real time clock that is used to assign
the values for all attributes that contain time (date and time of day).

19 Event Condition services

19.1 Event Conditions

This clause provides an object model for the following object:

EVENT-CONDITION

This clause specifies the following services:

DefineEventCondition
DeleteEventCondition
GetEventConditionAttributes

ReportEventConditionStatus
AlterEventConditionMonitoring

The Event Condition object models the MMS-visible aspects of an Event Condition. The event management
model defines two classes of Event Condition objects. They are the network-triggered Event Condition
object and the monitored Event Condition object.

A network-triggered Event Condition object models an event occurring due to the explicit request of an
MMS client using the TriggerEvent service. The network-triggered Event Condition object also models
events that occur internally, as a result of autonomous MMS server actions.

A monitored Event Condition object is a virtual representation of an aspect of MMS server activity that, due to
application design criteria, represents a significant occurrence in the processing of the MMS server. Events
associated with a monitored Event Condition object are detected by the autonomous action of the MMS server.

Either class of Event Condition object includes the potential for MMS server initiation of the EventNotification
service, through the Procedure for Event Transition Processing (see 18.1.1). The model of an Event Condition
object is specified below, followed by a description of the services that operate on the Event Condition object.

19.1.1 The Event Condition object

 EVENT-CONDITION ::= CLASS {
&name ObjectName,

 -- shall be unique within its range of specification (VMD, Domain, AA)
&accessControl Identifier,
&ecClass EC-Class,
&ecState EC-State,
&priority Priority,
&severity Severity,
&EventEnrollments ObjectName OPTIONAL,

 -- The following fields shall be present
 -- if and only if the value of &ecClass is monitored.

&enabled BOOLEAN OPTIONAL,
&alarmSummaryReports BOOLEAN OPTIONAL,
&monitoredVariable CHOICE {

named ObjectName,
unnamed Address,

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved264

unspecified NULL } OPTIONAL,
&evaluationInterval INTEGER OPTIONAL,
&timeToActive EventTime OPTIONAL,
&timeToIdle EventTime OPTIONAL

IF (cspi)
, &displayEnhancement CHOICE {
IF (des)

text MMSString
ELSE

text NULL
ENDIF
IF (dei)
, number INTEGER
ELSE
, number NULL
ENDIF
, none NULL

} OPTIONAL,
&group-Priority-Override CHOICE {

priority Priority,
undefined NULL
} OPTIONAL,

&ReferencingEventConditionLists Identifier OPTIONAL
-- EVENT-CONDITION-LIST.&name

ENDIF
}

19.1.1.1 &name

The &name field uniquely identifies the Event Condition object within the VMD. The &name may have
VMD-specific, Domain-specific or AA-specific scope.

19.1.1.2 &accessControl

The &accessControl field identifies an Access Control List object that provides conditions under which this Event
Condition may have its monitoring attributes modified, may be triggered (if a network-triggered Event Condition),
have its access control changed, or be deleted.

19.1.1.3 &ecClass

The &ecClass field indicates the class of the Event Condition object. This field contains the value
network-triggered, or the value monitored.

 EC-Class ::= INTEGER {
network-triggered (0),
monitored (1) } (0..1)

19.1.1.4 &ecState

The &ecState field shall specify the state of the Event Condition object. This field contains the value disabled,
idle, or active. The value of this field is always disabled for a network-triggered Event Condition
object.

 EC-State ::= INTEGER {
disabled (0),
idle (1),
active (2) } (0..2)

19.1.1.5 &priority

The &priority field indicates the priority of the Event Condition object relative to other Event Condition objects
defined at the VMD. The &priority field is an integer with values ranging from zero (0) to one hundred twenty
seven (127), inclusive. Zero represents the highest priority; one hundred twenty seven (127) represents the lowest
priority. Sixty four (64) represents normal priority. Behaviour of the MMS server with respect to the value of the
&priority field is a local issue.

NOTE Priority and normalPriority are defined in 16.1.3.7.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 265

19.1.1.6 &severity

The &severity field represents the effect of the event on the process being controlled. The &severity field is an
integer with values ranging from zero (0) to one hundred twenty seven (127), inclusive. Zero indicates the most
severe; one hundred twenty seven (127) indicates the least severe. Sixty four (64) represents normal severity.
Behaviour of the MMS server with respect to the value of the &severity field is a local matter.

 Severity ::= INTEGER (0..127)

 normalSeverity Severity ::= 64

19.1.1.7 &EventEnrollments

The &EventEnrollments field identifies a set of zero or more Event Enrollment objects, each of which refers to
this Event Condition object.

19.1.1.8 &enabled

The &enabled field exists only for monitored Event Conditions. It specifies whether (true) or not (false)
changes in the value of the variable referenced by the Event Condition object's &monitoredVariable field shall
cause invocation of the Procedure for Event Transition Processing for the Event Enrollment objects specified in
the &EventEnrollments field.

19.1.1.9 &alarmSummaryReports

The &alarmSummaryReports field exists only for monitored Event Condition objects. If true, it indicates that
the Event Condition object shall be considered for inclusion in responses to the GetAlarmSummary service
without regard to the value of the &ecState field of the Event Condition object and the value of the &aaRule field
of any referenced Event Enrollment objects. If false, the Event Condition object shall not be considered for
inclusion in alarm summaries unless at least one referenced Event Enrollment object contains a value for the
&aaRule field that is not equal to none.

19.1.1.10 &monitoredVariable

The &monitoredVariable field exists only for monitored Event Conditions. It identifies a variable object
(Unnamed or Named) of type boolean or the Null object. The value determined through the use of the referenced
variable object is monitored (by the MMS server through the V-Get function) to determine the value of the
&ecState field of an enabled monitored Event Condition object. For a locally defined Event Condition, or for
an Event Condition created through the use of the CreateProgramInvocation service, this field shall be
unspecified, indicating that the event transitions are determined by conditions other than the value of an
MMS-visible variable object.

NOTE The relationship between the value determined through the use of the referenced monitored variable object and the
state of the process controlled by the MMS server is a local issue.

19.1.1.11 &evaluationInterval

The &evaluationInterval field exists only for a monitored Event Condition. The &evaluationInterval field shall
specify the maximum acceptable time, in milliseconds, between successive determinations of the value of the
Event Condition object's &ecState field.

19.1.1.12 &timeToActive

The &timeToActive field exists only for a monitored Event Condition object. It shall specify the time (date
and time of day or Time Sequence Identifier) of the last detected transition of the value of the Event Condition
object's &ecState to active. If the Event Condition object's &ecState field has never had the value active,
this field shall have the value undefined.

 EventTime ::= CHOICE {
timeOfDay [0] IMPLICIT TimeOfDay,
timeSequenceIdentifier [1] IMPLICIT Unsigned32,
undefined [2] IMPLICIT NULL }

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved266

19.1.1.13 &timeToIdle

The &timeToIdle field exists only for a monitored Event Condition object. It shall specify the time (date and time
of day or Time Sequence Identifier) of the last detected transition of the Event Condition object's &ecState field to
the value idle. If the Event Condition object's &ecState field has never had the value idle, this field shall have
the value undefined.

19.1.1.14 &displayEnhancement

This field specifies the type of the &displayEnhancement field of the Event Condition object. This field is present
only if the cspi parameter CBB has been negotiated. If the value of this field is text, the
&displayEnhancement field is of type character string. If the value of this field is number, the
&displayEnhancement is of type integer. If the value of this field is none, the &displayEnhancement field is
NULL.

19.1.1.15 &group-Priority-Override

This field is present only if the cspi parameter CBB has been negotiated. This field shall contain a value that is
either null or an integer value between zero (0) and one hundred twenty-seven (127). Zero shall represent the
highest priority and one hundred twenty-seven shall represent the lowest priority. If the value of this field is
defined, it shall represent a priority value to be used by the MMS server in place of the value contained in the
&priority field. If the value of the &group-Priority-Override field is undefined, the MMS server shall use the
value of the &priority field in determining the importance of the Event Condition object.

This field need not be implemented if Event Condition List objects are not supported.

19.1.1.16 &ReferencingEventConditionLists

This field shall specify a set of Event Condition List objects that reference this Event Condition object. This field
is present only if the cspi parameter CBB has been negotiated.

This field need not be implemented if Event Condition List objects are not supported.

19.1.2 Event Condition State Diagrams

The state diagram for an event condition depends on the class of the Event Condition.

19.1.2.1 Network-triggered Event Condition

The state diagram that describes the network-triggered Event Condition object is shown in Figure 18.

Non-Existent

Disabled

1 2

3

Figure 18 - Network-triggered Event
Condition State Diagram

Transitions:

1) Receive DefineEventCondition indication specifying a network-triggered Event Condition object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 267

2) Receive DeleteEventCondition indication with the conditions for deletion of an Event Condition object being satisfied (see 19.3.2), or
loss of application association if the Event Condition object is of AA-specific scope and dependent on the lost application association,
or deletion of a Domain if the Event Condition object is of Domain-specific scope and dependent on the deleted Domain.

3) Receipt of any of the following indications:

- DeleteEventCondition with the conditions for deletion of an Event Condition object not being satisfied (see 19.3.2)
- GetEventConditionAttributes;
- ReportEventConditionStatus;
- AlterEventConditionMonitoring;
- TriggerEvent;
- GetEventEnrollmentAttributes;
- DefineEventEnrollment;
- DeleteEventEnrollment;
- AcknowledgeEventNotification;
- GetAlarmSummary;
- GetAlarmEnrollmentSummary; or
- Service modified by Attach To Event Condition;

19.1.2.2 Monitored Event Condition

The state diagram that describes a monitored event condition is defined by Figure 19.

Non-Existent

Disabled

Idle Active

1 2

3 4

7 78

5

6

2 2

8 8

Figure 19 - Monitored Event Condition State Diagram

Transitions:

1) Receive DefineEventCondition indication specifying a monitored event condition.

2) Receive DeleteEventCondition indication with the conditions for deletion of an Event Condition object being satisfied (see 19.3.2)

3) Receive AlterEventConditionMonitoring indication with the &enable field equal to true while the value of the variable referenced by
the &monitoredVariable field is false.

4) Receive AlterEventConditionMonitoring indication with the &enable field equal to true while the value of the variable referenced by
the &monitoredVariable field is true.

5) Value of the variable referenced by the &monitoredVariable field changes from false to true.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved268

6) Value of the variable referenced by the &monitoredVariable field changes from true to false.

7) Receive AlterEventConditionMonitoring indication with the &enable field equal to false.

8) Receipt of any of the following indications:

- DeleteEventCondition with the conditions for deletion of an Event Condition object not being satisfied (see 19.3.2);
- GetEventConditionAttributes;
- ReportEventConditionStatus;
- AlterEventConditionMonitoring with Enable parameter omitted or equal to current value of the &enable field;
- TriggerEvent;
- GetEventEnrollmentAttributes;
- DefineEventEnrollment;
- DeleteEventEnrollment;
- GetAlarmSummary;
- GetAlarmEnrollmentSummary; or
- Service modified by Attach To Event Condition;

19.2 DefineEventCondition service

The DefineEventCondition service is used by an MMS client to request the creation of an Event Condition object
at a VMD.

19.2.1 Structure

The structure of the component service primitives is shown in Table 106.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Event Condition Name
 Class
 Priority
 Severity
 Alarm Summary Reports
 Monitored Variable
 Evaluation Interval
 Display Enhancement
 String
 Index
 No Enhancement

Result(+)

Result(-)
 Error Type

M
M
M
M
M
C
C
C
M
S
S
 S

M(=)
M(=)
M(=)
M(=)
M(=)
C(=)
C(=)
C(=)
M(=)
S(=)
S(=)
S(=)

S

S
M

S(=)

S(=)
M(=)

cspi
des
dei

Table 106 - DefineEventCondition service

19.2.1.1 Argument

This parameter shall convey the parameters of the DefineEventCondition service request.

19.2.1.1.1 Event Condition Name

The Event Condition Name parameter, of type Object Name, shall contain the name to be assigned to the created
Event Condition object. It shall uniquely identify the Event Condition object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 269

19.2.1.1.2 Class

The Class parameter, of type EC-Class, shall be the initial value of the &ecClass field of the newly created Event
Condition object.

19.2.1.1.3 Priority

The Priority parameter, of type Priority, shall contain the initial value of the &priority field of the newly created
Event Condition object.

19.2.1.1.4 Severity

The Severity parameter, of type Severity, shall contain the initial value of the &severity field of the newly created
Event Condition object.

19.2.1.1.5 Alarm Summary Reports

This parameter, of type boolean, shall be present if and only if the Event Condition object to be created is a
monitored Event Condition object. If specified, the Alarm Summary Reports parameter shall contain the initial
value of the Event Condition object's &alarmSummaryReports field.

19.2.1.1.6 Monitored Variable

The Monitored Variable parameter, of type Variable Specification, shall be present if and only if the Event
Condition object to be created is a monitored Event Condition object. If present, it shall specify a Named or
Unnamed Variable object of boolean type that is to be referenced by the Event Condition object's
&monitoredVariableReference field.

19.2.1.1.7 Evaluation Interval

The Evaluation Interval parameter, of type integer, shall be present if and only if the Event Condition object to be
created is a monitored Event Condition object. It shall specify the maximum acceptable time, in milliseconds,
between determinations of the value of the Event Condition object's &ecState field. The value of this parameter
shall be such that determination at a periodic interval less than or equal to the specified interval shall be sufficient
for reliable and timely detection of state changes. Any value between zero and 2**31 - 1, inclusive, may be
specified.

This parameter shall be provided as guidance to the MMS server. Acceptance of this value guarantees only that
the MMS server shall make every effort to honour the specified value. A MMS server that determines that it is
unable to honour the service request due to resource or other limitations shall return a TIME-RESOLUTION error
in response to the service request.

The actual decision to determine the value of the Event Condition object's &ecState field may be based on the
passage of time (such as a scan cycle), on knowledge about the variable referenced by the &monitoredVariable
field, or other local criteria. If the decision is to be time-based, a non-zero value for the Evaluation Interval
parameter shall specify the maximum acceptable time between determinations. A zero value shall indicate that
any interval is acceptable.

19.2.1.1.7.1 Display Enhancement

This parameter shall be present if and only if the cspi CBB has been negotiated. If this parameter is present, one
of the following parameters shall be selected.

19.2.1.1.7.1.1 String

This choice indicates that the string form of the Display Enhancement parameter has been selected. This selection
may be made only if the des CBB has been negotiated.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved270

19.2.1.1.7.1.2 Index

This choice indicates that the numeric form of the Display Enhancement parameter has been selected. This
selection may be made only if the dei CBB has been negotiated.

19.2.1.1.7.1.3 No Enhancement

This choice indicates that no Display Enhancement has been selected. This parameter shall be selected if neither
des nor dei has been negotiated.

NOTE This choice may be made (user option) if des or dei have been negotiated.

19.2.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

19.2.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

19.2.2 Service Procedure

19.2.2.1 Preconditions

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the VMD are satisfied for the service class = LOAD. If this conditions is not satisfied, a
Result(-) shall be returned with an error class = ACCESS and error code = OBJECT-ACCESS-DENIED.

The MMS server shall verify that no Event Condition with a &name parameter equal to the Event Condition Name
parameter already exists. If this condition is not satisfied, a Result(-) shall be returned.

19.2.2.2 Actions

A new Event Condition object shall be created and initialized as described below.

a) &name - Initialized to equal the value of the Event Condition Name parameter.

b) &accessControl - Initialized to reference an Access Control List object that will report the value of MMS
Deletable as true (see 9.1.4). The predefined symbol 'M_Deletable' (see 25.3.2.1) may be used for this
purpose.

c) &ecClass - Initialized to equal the value of the Class parameter.

d) &ecState - Initialized to the value disabled.

e) &priority - Initialized to the value of the Priority parameter.

f) &severity - Initialized to the value of the Severity parameter.

g) &alarmSummaryReports - Initialized to the value of Alarm Summary Reports parameter, if present.

h) &EventEnrollments - Initialized to empty.

i) &enabled - Initialized to the value false.

j) &monitoredVariable - Initialized to reference the object specified by the value of the Monitored Variable
parameter.

k) &evaluationInterval - Initialized to equal the value of the Evaluation Interval parameter.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 271

l) &timeToActive - Initialized to the value undefined.

m) &timeToIdle - Initialized to the value undefined.

n) If the cspi CBB has been negotiated and if the String choice of Display Enhancement parameter has been
selected, the value of the &displayEnhancement field of the Event Condition shall be the value of the
String parameter.

o) If the cspi CBB has been negotiated and if the Index choice of the Display Enhancement parameter has
been selected, the value of &displayEnhancement field of the Event Condition shall be the value of the
Index parameter.

p) If the cspi CBB has been negotiated and if the No Enhancement choice of the Display Enhancement
parameter has been selected, the value of &displayEnhancement field of the Event Condition shall be
none.

q) If the cspi CBB has been negotiated, the &group-Priority-Override field shall be initialized to
undefined.

r) If the cspi CBB has been negotiated, the &ReferencingEventConditionLists field shall be initialized to
empty.

A Result(+) shall be returned, indicating that the Event Condition object has been created.

19.3 DeleteEventCondition service

The DeleteEventCondition service is used by an MMS client to request that the MMS server delete one or more
Event Condition objects.

19.3.1 Structure

The structure of the component service primitives is shown in Table 107.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Scope of Delete
 Event Condition Names
 AA Specific
 Domain Name
 VMD Specific

Result(+)
 Candidates Not Deleted

Result(-)
 Error Type

M
M
S
S
S
S

M(=)
M(=)
S(=)
S(=)
S(=)
S(=)

S
M

S
M

S(=)
M(=)

S(=)
M(=)

Table 107 - DeleteEventCondition service

19.3.1.1 Argument

This parameter shall convey the parameters of the DeleteEventCondition service request.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved272

19.3.1.1.1 Scope Of Delete

The Scope Of Delete parameter shall specify the extent of delete to be attempted. One of the following parameters
shall be selected.

19.3.1.1.1.1 Event Condition Names

Selection of this parameter, containing a list of one or more Event Condition Name parameters, each of type
Object Name and each identifying an Event Condition object, indicates that a specific list of Event Condition
objects is to be deleted. This parameter provides the names of the specific candidate Event Condition objects to be
deleted.

19.3.1.1.1.2 AA Specific

Selection of this parameter shall indicate that all Event Condition objects whose scope is the current application
association are candidates for deletion.

19.3.1.1.1.3 Domain Name

Selection of this parameter, of type Identifier, indicates that all Event Condition object whose scope is the Domain
whose name is provided by this parameter are candidates for deletion.

19.3.1.1.1.4 VMD Specific

Selection of this parameter shall indicate that all Event Condition objects whose scope is the VMD are candidates
for deletion.

19.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall include the
following parameter.

19.3.1.2.1 Candidates Not Deleted

This parameter, of type integer, shall contain the number of Event Condition objects that were included in the
scope of Event Condition objects to be deleted, but that were not deleted because of a non-empty value of the
&EventEnrollments field, or because deletion was not permitted.

19.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

19.3.2 Service Procedure

19.3.2.1 Preconditions

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the VMD are satisfied for the service class = DELETE. If this condition is not satisfied,
the service request fails and a Result(-) shall be returned.

19.3.2.2 Actions

The MMS server shall prepare a list of objects to be deleted as indicated by the Scope of Delete parameter. It shall
initialize the Candidates Not Deleted parameter to zero.

For each object on the list, the MMS server shall perform the following checks:

a) The Event Condition object exists;

b) The conditions in the Access Control List specified by the &accessControl field of the object to be deleted
shall be satisfied for service class = DELETE;

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 273

c) The &EventEnrollments field shall be empty;

d) The &ReferencingEventConditionLists field (if present) shall be empty.

If any of these conditions is not met, the MMS server shall increment by one the Candidates Not Deleted value
response parameter and proceed to the next Event Condition object. Otherwise, the MMS server shall remove the
reference to this Event Condition object from the &EventConditions field of the Access Control List object
referenced by the &accessControl field of this Event Condition object and delete the Event Condition object.

After the complete list has been processed, the MMS server shall return a Result(+) with the Candidates Not
Deleted parameter set to the number of Event Condition objects that were not deleted.

NOTE If this count is not equal to zero, the requesting MMS-user (the client) may use the GetNameList service to determine
the Event Condition objects that were not deleted.

19.4 GetEventConditionAttributes service

The GetEventConditionAttributes service is used by an MMS client to obtain the attributes of an Event Condition
object at a VMD.

19.4.1 Structure

The structure of the component service primitives is shown in Table 108.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Event Condition Name

Result(+)
 MMS Deletable
 Class
 Priority
 Severity
 Alarm Summary Reports
 Monitored Variable
 Evaluation Interval
 Access Control List
 Group Priority Override
 List of Referencing ECL
 Display Enhancement
 String
 Index
 No Enhancement

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M
M
M
C
C
C
C
C
C
C
S
S
S

S
M

S(=)
M(=)
M(=)
M(=)
M(=)
C(=)
C(=)
C(=)
C(=)
C(=)
C(=)
C(=)
S(=)
S(=)
S(=)

S(=)
M(=)

aco
cspi
cspi
cspi

Table 108 - GetEventConditionAttributes service

19.4.1.1 Argument

This parameter shall convey the parameter of the GetEventConditionAttributes service request.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved274

19.4.1.1.1 Event Condition Name

This parameter, of type Object Name, shall contain the name of the Event Condition object for which the attributes
are to be obtained.

19.4.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

19.4.1.2.1 MMS Deletable

This parameter, of type boolean, shall indicate whether (true) or not (false) the Event Condition object may be
deleted using the DeleteEventCondition service. Subclause 9.1.4 specifies the value to be returned by this
parameter.

19.4.1.2.2 Class

This parameter, of type EC-Class, shall contain the value of the Event Condition object's &ecClass field.

19.4.1.2.3 Priority

This parameter, of type Priority, shall contain the current value of the Event Condition object's &priority field.

19.4.1.2.4 Severity

This parameter, of type integer, shall contain the value of the Event Condition object's &severity field.

19.4.1.2.5 Alarm Summary Reports

For a monitored Event Condition object, this parameter, of type boolean, shall contain the value of the Event
Condition object's &alarmSummaryReports field. This parameter shall be omitted for a network-triggered
Event Condition object.

19.4.1.2.6 Monitored Variable

For a monitored Event Condition object, the Monitored Variable parameter, of type Variable Specification,
shall contain the value of the key attribute (the &name attribute for a Named Variable, or the &address field for an
Unnamed Variable) from the object referenced by the Event Condition object's &monitoredVariable field. If the
value of the &monitoredVariable field is unspecified, this parameter shall be omitted. If the object referenced
by the &monitoredVariable field becomes unavailable, the Monitored Variable parameter shall have the value
UNDEFINED.

19.4.1.2.7 Evaluation Interval

For a monitored Event Condition object, this parameter, of type integer, shall contain the value of the
&evaluationInterval field of the Event Condition object. This parameter shall be omitted for a
network-triggered Event Condition object.

19.4.1.2.8 Access Control List

This parameter, of type Identifier, shall indicate the name of the Access Control List object that controls access to
this Event Condition object. This parameter shall not appear unless the aco parameter CBB has been negotiated.

19.4.1.2.9 Group priority override

This parameter shall contain the value of the &group-Priority-Override field of the Event Condition object. This
parameter shall not appear unless the cspi parameter CBB has been negotiated.

NOTE This parameter need not appear if Event Condition Lists are not supported.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 275

19.4.1.2.10 List of Referencing ECL

This parameter shall contain a list of names, derived from the contents of the &ReferencingEventConditionLists
field of the Event Condition object. Each name shall be equal to the value of the &name field of a referencing
Event Condition List object. This parameter shall not appear unless the cspi parameter CBB has been
negotiated.

NOTE This parameter need not appear if Event Condition Lists are not supported.

19.4.1.2.11 Display Enhancement

This parameter shall indicate the value of the &displayEnhancement field of the Event Condition object. This
parameter shall not appear unless the cspi parameter CBB has been negotiated. Depending on its value, one of
the following parameters shall be selected.

19.4.1.2.11.1 String

This parameter, of type character string, is the string form of the Display Enhancement parameter.

19.4.1.2.11.2 Index

This parameter, of type integer, is the numeric form of the Display Enhancement parameter.

19.4.1.2.11.3 No Enhancement

This parameter, of type NULL, specifies that no Display Enhancement is present.

19.4.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

19.4.2 Service Procedure

The MMS server issue a Result(+) containing the values of the specified parameters.

19.5 ReportEventConditionStatus service

The ReportEventConditionStatus service is used by an MMS client to obtain the status of an Event Condition
object from the MMS server.

19.5.1 Structure

The structure of the component service primitives is shown in Table 109.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved276

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Event Condition Name

Result(+)
 Current State
 Number of Event Enrollments
 Enabled
 Time Of Last Transition to Active
 Time Of Last Transition to Idle

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M
C
C
C

S
M

S(=)
M(=)
M(=)
C(=)
C(=)
C(=)

S(=)
M(=)

Table 109 - ReportEventConditionStatus service

19.5.1.1 Argument

This parameter shall convey the parameter of the ReportEventConditionStatus service request.

19.5.1.1.1 Event Condition Name

This parameter, of type Object Name, shall contain the &name field of the Event Condition object for which the
status report is requested.

19.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

19.5.1.2.1 Current State

This parameter, of type EC-State, shall contain the value of the Event Condition object's &ecState field.

19.5.1.2.2 Number Of Event Enrollments

This parameter, of type integer, shall contain the number of entries in the Event Condition object's
&EventEnrollments field.

19.5.1.2.3 Enabled

This parameter, of type boolean, shall contain the value of the &enabled field of the Event Condition object for a
monitored Event Condition object. This parameter shall be omitted for a network-triggered Event
Condition object.

19.5.1.2.4 Time Of Last Transition To Active

For a monitored Event Condition object having a &timeToActive field with value not equal to undefined,
this parameter, expressed as a date and time of day or a Time Sequence Identifier, shall contain the current value
of the &timeToActive field. Otherwise, this parameter shall be omitted.

19.5.1.2.5 Time Of Last Transition To Idle

For a monitored Event Condition object having a &timeToIdle field with value not equal to undefined, this
parameter, expressed as a date and time of day or a Time Sequence Identifier, shall contain the current value of the
&timeToIdle field. Otherwise, this parameter shall be omitted.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 277

19.5.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

19.5.2 Service Procedure

The MMS server shall issue a Result(+) containing the values of the specified parameters.

19.6 AlterEventConditionMonitoring service

The AlterEventConditionMonitoring service is used by an MMS client to request that the MMS server alter any
combination of a monitored Event Condition object's &enable, &priority, &alarmSummaryReports and
&evaluationInterval fields.

19.6.1 Structure

The structure of the component service primitives is shown in Table 110.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Event Condition Name
 Enabled
 Priority
 Alarm Summary Reports
 Evaluation Interval
 Display Enhancement
 String
 Index
 No Enhancement

Result(+)

Result(-)
 Error Type

M
M
U
U
U
U
U
S
S
S

M(=)
M(=)
U(=)
U(=)
U(=)
U(=)
U(=)
S(=)
S(=)
S(=)

S

S
M

S(=)

S(=)
M(=)

cei
cspi
des
dei

Table 110 - AlterEventConditionMonitoring service

19.6.1.1 Argument

This parameter shall convey the parameters of the AlterEventConditionMonitoring service request. At least one of
Enabled, Priority, Alarm Summary Reports, or Evaluation Interval shall be present.

19.6.1.1.1 Event Condition Name

This parameter, of type Object Name, shall specify the name of the Event Condition object to be altered.

19.6.1.1.2 Enabled

This parameter, of type boolean, shall specify (if included) the desired replacement value for the Event Condition
object's &enabled field.

If the Enabled parameter is not specified, the &enabled field shall not be changed.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved278

19.6.1.1.3 Priority

This parameter, of type Priority, shall specify (if included) the desired replacement value for the Event Condition
object's &priority field.

If the Priority parameter is omitted, the &priority field of the Event Condition object shall not be changed.

NOTE Depending on the particular use of priority by an implementation, it is possible that assignment of increased priority
may result in a period during which EventNotification requests primitives are not sequentially ordered with respect to
time of occurrence.

19.6.1.1.4 Alarm Summary Reports

This parameter, of type boolean, shall specify (if included) the desired replacement value for the Event Condition
object's &alarmSummaryReports field.

If the Alarm Summary Reports parameter is not specified, the value of the &alarmSummaryReports field shall not
be changed.

19.6.1.1.5 Evaluation Interval

This parameter, of type integer, shall specify (if included) a new proposed value for the Evaluation Interval
attribute of the Event Condition object. This parameter shall not be included unless the cei CBB has been
negotiated.

This parameter, if included, shall be provided as guidance to the MMS server. Acceptance of this value shall
guarantee only that the MMS server shall make every effort to honour the specified value. A MMS server that
determines itself, through local means, to be unable to honour the service request, due to resource or other
limitations, shall return a TIME-RESOLUTION error in response to this service request.

19.6.1.1.5.1 Display Enhancement

This parameter shall specify (if included) that the &displayEnhancement field of the Event Condition shall be
altered by this service. This parameter shall not appear unless cspi CBB has been negotiated. If this parameter
is included, one of the following parameters shall be selected.

19.6.1.1.5.1.1 String

This parameter, of type character string, is the string form of the Display Enhancement parameter. This selection
may be made only if the des CBB has been negotiated.

19.6.1.1.5.1.2 Index

This parameter, of type integer, is the numeric form of the Display Enhancement parameter. This selection may be
made only if the dei CBB has been negotiated.

19.6.1.1.5.1.3 No Enhancement

This parameter, of type NULL, specifies that no Display Enhancement is present. This parameter shall be selected
if neither des nor dei has been negotiated.

19.6.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

19.6.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 279

19.6.2 Service Procedure

19.6.2.1 Preconditions

The MMS server shall verify that:

a) the Event Condition object identified by the Event Condition Name parameter is a monitored Event
Condition.

b) all the conditions in the Access Control List object referenced by the &accessControl field of the VMD are
satisfied for the service class = LOAD.

c) that all the conditions in the Access Control List object referenced by the &accessControl field of the
Event Condition object are satisfied for the service class = LOAD.

If any of these conditions is not satisfied, the service shall fail and a Result(-) shall be returned.

19.6.2.2 Actions

The monitored Event Condition object specified by the Event Condition Name parameter shall have one or more
of its attribute field values altered.

a) If the Enabled parameter is present in the service request, the &enabled field shall be altered.

b) If the Priority parameter is present in the service request, the &priority field shall be altered.

c) If the Alarm Summary Reports parameter is present in the service request, the &alarmSummaryReports
field shall be altered.

d) If the cei CBB has been negotiated and if the Evaluation Interval parameter is present in the service
request, the &evaluationInterval field shall be altered.

e) If the cspi CBB has been negotiated and if the Display Enhancement parameter is present in the service
request, the &displayEnhancement field shall be altered. If the String choice is selected, the
&displayEnhancement field shall be set to the value of the String parameter. If the Index choice is
selected, the &displayEnhancement field shall be set to the value of the Index parameter. Otherwise, the
&displayEnhancement field shall be set to none.

A Result(+) response shall be issued.

After the response is issued, if an included value for the Enabled parameter caused a change in the value of the
Event Condition object's &enabled field, the Procedure for Event Transition Processing (18.1.1) shall be executed
for the indicated transition.

20 Event Action services

20.1 Event Actions

This clause provides an object model for the following object:

EVENT-ACTION

This clause specifies the following services:

DefineEventAction
DeleteEventAction

GetEventActionAttributes
ReportEventActionStatus

An Event Action object is an MMS confirmed service that shall be executed whenever a specified transition of an
Event Condition object's &ecState field is detected. An Event Action object represents a component of the

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved280

Procedure for Event Transition Processing (see 18.1.1). The attributes of an Event Action object are described
below, followed by a description of the services that operate on the Event Action object.

20.1.1 The Event Action object

This clause introduces the model of the Event Action Object.

 EVENT-ACTION ::= CLASS {
&name ObjectName,

 -- shall be unique within its range of specification (VMD, Domain, AA)
&accessControl Identifier,
&confirmedServiceRequest ConfirmedServiceRequest,
&Modifiers Modifier OPTIONAL,
&EventEnrollments Identifier OPTIONAL
}

20.1.1.1 &name

The &name field uniquely identifies the Event Action object within the VMD. It shall have VMD-specific,
Domain-specific or AA-specific scope.

20.1.1.2 &accessControl

The &accessControl field identifies an Access Control List object that provides conditions under which this Event
Action object may be deleted or have its access control changed.

20.1.1.3 &confirmedServiceRequest

The &confirmedServiceRequest field identifies the service procedure to be executed by the MMS server as part of
the Procedure for Event Transition Processing. This field contains the service argument to be used when
executing this service procedure.

20.1.1.4 &Modifiers

The &Modifiers field specifies an ordered set of zero or more modifiers that apply to the execution of the Event
Action.

20.1.1.5 &EventEnrollments

The &EventEnrollments field identifies zero or more Event Enrollment objects each of which refers to this Event
Action object.

20.2 DefineEventAction service

The DefineEventAction service is used by an MMS client to request the creation of an Event Action object at a
VMD.

20.2.1 Structure

The structure of the component service primitives is shown in Table 111.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 281

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Event Action Name
 List of Modifier
 Confirmed Service Request

Result(+)

Result(-)
 Error Type

M
M
U
M

M(=)
M(=)
U(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 111 - DefineEventAction service

20.2.1.1 Argument

This parameter shall convey the parameters of the DefineEventAction service request.

20.2.1.1.1 Event Action Name

This parameter, of type Object Name, shall contain the value to be assigned to the &name field of the Event
Action object to be created.

20.2.1.1.2 List Of Modifier

This parameter shall contain the modifiers, if any, that apply for each execution of this Event Action (see 5.6).

NOTE This list does not apply to the execution of the DefineEventAction service.

20.2.1.1.3 Confirmed Service Request

This parameter shall contain a choice of a confirmed service and a valid argument, as specified by the Argument
parameter of the request primitive of that confirmed service. The responder role for this service shall have been
included in the list of supported services negotiated by the MMS server, through the use of the Initiate service,
when the current Application Association was established.

20.2.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

20.2.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

20.2.2 Service Procedure

20.2.2.1 Preconditions

The MMS server shall verify that no Event Action object with the same name as the Event Action Name
parameter. If this condition is not satisfied, a Result(-) shall be returned.

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the VMD are satisfied for the service class = LOAD. If this condition is not satisfied, a
Result(-) shall be returned with an error class = ACCESS and error code = OBJECT-ACCESS-DENIED.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved282

20.2.2.2 Actions

An Event Action object shall be created and initialized as follows:

a) &name - Initialized to the value of the Event Action Name parameter.

b) &accessControl - Initialized to refer to an Access Control List object that will report the value of MMS
Deletable as true (see 9.1.4). The predefined symbol 'M_Deletable' (see 25.3.2.1) may be used for this
purpose.

c) &Modifiers - Initialized to the value of the List Of Modifier parameter, if present. Otherwise initialized to
empty.

d) &confirmedServiceRequest - Initialized to the value of the Confirmed Service Request parameter.

e) &EventEnrollments - Initialized to empty.

A Result(+) shall be returned, indicating creation of the Event Action object.

20.3 DeleteEventAction service

The DeleteEventAction service is used by an MMS client to request that an MMS server delete one or more Event
Action objects.

20.3.1 Structure

The structure of the component service primitives is shown in Table 112.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Scope of Delete
 Event Action Names
 AA Specific
 Domain Name
 VMD Specific

Result(+)
 Candidates Not Deleted

Result(-)
 Error Type

M
M
S
S
S
S

M(=)
M(=)
S(=)
S(=)
S(=)
S(=)

S
M

S
M

S(=)
M(=)

S(=)
M(=)

Table 112 - DeleteEventAction service

20.3.1.1 Argument

This parameter shall convey the parameters of the DeleteEventAction service request.

20.3.1.1.1 Scope Of Delete

The Scope Of Delete parameter shall specify the extent of delete to be attempted. One of the following parameters
shall be selected.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 283

20.3.1.1.1.1 Event Action Names

Selection of this parameter, containing one or more Event Action Names each of type Object Name and each
identifying an Event Action object, provides the names of the specific candidate Event Action objects as
candidates for deletion.

20.3.1.1.1.2 AA Specific

Selection of this parameter indicates that all Event Action objects whose scope is the current application
association are candidates for deletion.

20.3.1.1.2 Domain Name

Selection of this parameter, of type Identifier, indicates that all Event Action objects whose scope is the specified
Domain are candidates for deletion.

20.3.1.1.2.1 VMD Specific

Selection of this parameter indicates that all Event Action objects whose scope is VMD are candidates for
deletion.

20.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall include the
following parameter.

20.3.1.2.1 Candidates Not Deleted

This parameter, of type integer, shall contain the number of Event Action objects that were candidates for deletion
but were not deleted because of a non-empty value of the &EventEnrollment field, or because the conditions in the
Access Control List referenced by the &accessControl field of the Event Action object were not satisfied for
Service Class = DELETE.

20.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

20.3.2 Service Procedure

20.3.2.1 Preconditions

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the VMD are satisfied for the service class = DELETE. If this condition is not satisfied,
the service request fails and a Result(-) shall be returned.

20.3.2.2 Actions

The MMS server shall prepare a list of objects to be deleted as indicated by the Scope of Delete parameter. It shall
initialize the Candidates Not Deleted parameter to zero.

For each object on the list, the MMS server shall perform the following checks:

a) The Event Action object exists;

b) The conditions in the Access Control List specified by the &accessControl field of the object to be deleted
shall be satisfied;

c) The &EventEnrollments field shall be empty;

If any of these conditions is not met, the MMS server shall increment by one the Candidates Not Deleted value
response parameter and proceed to the next Event Action object. Otherwise, the MMS server shall remove the

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved284

reference to this Event Action object from the &EventActions field of the Access Control List object referenced
by the &accessControl field of this Event Action object and delete the Event Action object.

After the complete list has been processed, the MMS server shall return a Result(+) with the Candidates Not
Deleted parameter set to the number of Event Action objects that were not deleted.

NOTE If this count is not equal to zero, the requesting MMS-user (the client) may use the GetNameList service to determine
the Event Action objects that were not deleted.

20.4 GetEventActionAttributes service

The GetEventActionAttributes service is used by an MMS client to obtain from an MMS server the values of the
attributes of an Event Action object at the VMD.

20.4.1 Structure

The structure of the component service primitives is shown in Table 113.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Event Action Name

Result(+)
 MMS Deletable
 List Of Modifier
 Confirmed Service Request
 Access Control List

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M
M
C

S
M

S(=)
M(=)
M(=)
M(=)
C(=)

S(=)
M(=)

aco

Table 113 - GetEventActionAttributes service

20.4.1.1 Argument

This parameter shall convey the parameters of the GetEventActionAttributes service request.

20.4.1.1.1 Event Action Name

This parameter, of type Object Name, shall contain the value of the &name field of the Event Action object for
which the attributes are requested.

20.4.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

20.4.1.2.1 MMS Deletable

This parameter, of type boolean, shall indicate whether (true) or not (false) this Event Action object may be
deleted using the DeleteEventAction service. Subclause 9.1.4 specifies the value to be returned by this parameter.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 285

20.4.1.2.2 List Of Modifier

This parameter shall contain the value of the &Modifiers field of the Event Action object.

20.4.1.2.3 Confirmed Service Request

This parameter shall contain the value of the Event Action object's &confirmedServiceRequest field.

20.4.1.2.4 Access Control List

This parameter, of type Identifier, shall indicate the &name field of the Access Control List object referenced by
the &accessControl field of this Event Action object. This parameter shall not appear unless the aco parameter
CBB has been negotiated.

20.4.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

20.4.2 Service Procedure

The MMS server shall issue a Result(+) containing the value of the specified parameters.

20.5 ReportEventActionStatus service

The ReportEventActionStatus service is used by an MMS client to obtain a count of the number of Event
Enrollment objects that are currently specifying an Event Action object.

20.5.1 Structure

The structure of the component primitives is shown in Table 114.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Event Action Name

Result(+)
 Number of Event Enrollments

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M

S
M

S(=)
M(=)

S(=)
M(=)

Table 114 - ReportEventActionStatus service

20.5.1.1 Argument

This parameter shall convey the parameter of the ReportEventActionStatus service request.

20.5.1.1.1 Event Action Name

This parameter, of type Object Name, shall contain the value of the &name field of the Event Action object for
which status is desired.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved286

20.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall include the
following parameter.

20.5.1.2.1 Number Of Event Enrollments

This parameter, of type integer, shall contain the count of Event Enrollment objects referenced by the
&EventEnrollments field of the Event Action object.

20.5.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

20.5.2 Service Procedure

20.5.2.1 Preconditions

If no Event Action object whose &name field matches the Event Action Name parameter, a Result(-) shall be
returned.

20.5.2.2 Actions

The MMS server shall issue a Result(+) containing the count of entries in the Event Action object's
&EventEnrollments field.

20.5.3 The Event Action State Diagram

The state diagram for an event action is shown in Figure 20.

Non-Existent

Defined

1 2

3

Figure 20 - Event Action State Diagram

Transitions:

1. Receive DefineEventAction indication.

2. Receive DeleteEventAction indication with the conditions for deletion of an Event Action object being satisfied (see 20.3.2), or loss
of application association if the Event Action object is of AA-specific scope and is dependent on the lost application association, or
deletion of a Domain if the Event Action object is of Domain-specific scope and dependent on the deleted Domain.

3. Receipt of any of the following indications:

- DeleteEventAction with the conditions for deletion of an Event Condition object being satisfied (see 20.3.2)
- GetEventActionAttributes;
- ReportEventActionStatus;
- DefineEventEnrollment;
- DeleteEventEnrollment; or
- GetEventEnrollmentAttributes;

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 287

21 Event Enrollment services

21.1 Event Enrollments

This clause provides an object model for the following object:

EVENT-ENROLLMENT

This clause specifies the following services:

DefineEventEnrollment
AlterEventEnrollment
DeleteEventEnrollment

GetEventEnrollmentAttributes
ReportEventEnrollmentStatus

An Event Enrollment represents a request from an MMS user to be notified of the occurrence of one or more
specified transitions of an Event Condition object as reflected in its &ecState field, or to delay execution of a
confirmed MMS-service until the occurrence of one or more specified transitions of an Event Condition object.
An MMS user receiving a notification of a transition as a result of an Event Enrollment for the specified transition,
may acknowledge receipt of the transition notification to the MMS user issuing the notification.

21.1.1 The Event Enrollment object

This clause introduces the model of the Event Enrollment Object

 EVENT-ENROLLMENT ::= CLASS {
&name ObjectName,

 -- shall be unique within its range of specification (VMD, Domain, AA)
&accessControl Identifier,
&eeClass EE-Class ,
&eventCondition Identifier,
&ecTransitions Transitions,
&aAssociation INTEGER,

 -- The following two fields are present if and only if the
 -- value of &eeClass is modifier.

&invokeID INTEGER OPTIONAL,
&remainingDelay CHOICE {

time INTEGER,
forever NULL } OPTIONAL,

 -- All the following fields are present if and only if the
 -- value of &eeClass is notification.

¬ificationLost BOOLEAN OPTIONAL,
&eventAction ObjectName OPTIONAL,
&duration EE-Duration OPTIONAL,
&clientApplication ApplicationReference OPTIONAL,

 -- The following four fields are present if and only if the
 -- value of &eeClass is notification and the value of &ecState
 -- of the Event Condition object is monitored

&aaRule AlarmAckRule OPTIONAL,
&timeActiveAck EventTime OPTIONAL,
&timeIdleAck EventTime OPTIONAL,
&ackState ENUMERATED {

acked,
noAckA,
noAckI } OPTIONAL,

&lastState EC-State OPTIONAL
IF (cspi)
, &displayEnhancement CHOICE {
IF (des)

text MMSString
ELSE

text NULL
ENDIF
IF (dei)
, number INTEGER
ELSE

number NULL
ENDIF
, none NULL } OPTIONAL
ENDIF

}

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved288

21.1.1.1 &name

The &name field uniquely identifies the Event Enrollment object within the VMD. It may be of VMD-specific,
Domain-specific or AA-specific scope.

21.1.1.2 &accessControl

The &accessControl field specifies the Access Control List object that provides conditions under which this Event
Enrollment object may have its attributes changed, may be deleted, or may have its access control changed.

21.1.1.3 &eeClass

The &eeClass field indicates the class of the Event Enrollment object. Two values for the &eeClass field are
defined:

 EE-Class ::= INTEGER {
modifier (0),
notification (1) } (0..1)

21.1.1.3.1 modifier

The Event Enrollment object represents a temporary (executed one time only and deleted) Event Enrollment,
created as a result of receipt of a service indication specifying a confirmed MMS service that was modified by the
Attach To Event Condition service modifier. An Event Enrollment object having the value of the &eeClass field
equal to modifier is referred to as a modifier Event Enrollment object. Modifier Event Enrollment objects are
not alterable through the AlterEventEnrollment service or deletable through the DeleteEventEnrollment service.

21.1.1.3.2 notification

The Event Enrollment object is an explicitly defined or predefined Event Enrollment object. It represents a
request that the Procedure for Event Transition Processing (see 18.1.1) be executed upon detection of any of the
indicated Event Condition transitions. An Event Enrollment object having the value of the &eeClass field equal to
notification is referred to as a notification Event Enrollment object.

21.1.1.4 &eventCondition

The &eventCondition field identifies the Event Condition object that will cause invocation of the Procedure for
Event Transition Processing (see 18.1.1) for this Event Enrollment object. If the referenced Event Condition
object becomes unavailable for use, for example through the deletion of a Domain or termination of an application
association, the value of this field becomes undefined.

21.1.1.5 &ecTransitions

If the Event Enrollment object references a monitored Event Condition, the &ecTransitions field contains the
set of Event Condition transitions that cause the invocation of the Procedure for Event Transition Processing for
this Event Enrollment object. It consists of any non-empty set composed of members chosen from the elements
disabled-to-active, disabled-to-idle, idle-to-active, idle-to-disabled,
active-to-idle, active-to-disabled, and any-to-deleted. For a notification Event Enrollment
object, if the value of the Event Enrollment object's &aaRule field is not equal to none, this field shall include
transitions to the active state. If the value of the &aaRule is ack-all, this field shall also include transitions
to the idle state.

If the Event Enrollment object references a network-triggered Event Condition object, this field shall
specify the empty set and the Procedure for Event Transition Processing for this Event Enrollment shall be
executed only if the event is explicitly triggered by an MMS-client using the TriggerEvent service or if the
network-triggered event occurs as a result of an autonomous action of the MMS server.

If the &ecTransitions field contains the element any-to-deleted, the Procedure for Event Transition
Processing shall be performed if the Event Condition object referenced by the &eventCondition field of the Event
Enrollment object becomes undefined, or if the &monitoredVariable field of the Event Condition object
referenced by the &eventCondition field of the Event Enrollment object changes to unspecified.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 289

 Transitions ::= BIT STRING {
idle-to-disabled (0),
active-to-disabled (1),
disabled-to-idle (2),
active-to-idle (3),
disabled-to-active (4),
idle-to-active (5),
any-to-deleted (6) }(SIZE(7))

21.1.1.6 &aAssociation

The &aAssociation field identifies the application association that shall be used for EventNotifications in the case
of notification Event Enrollment objects.

This attribute cannot be reported through any of the MMS services. The &abstractSyntax field of this application-
association shall be:

a) the abstract syntax in use on the application association over which the DefineEventEnrollment service
request or AttachToEventCondition modifier was received, or

b) as specified locally if the Event Enrollment object was not created through the use of an MMS service.

21.1.1.7 &invokeID

The &invokeID field exists only for modifier Event Enrollment objects. It shall contain the &invokeID field of
the Transaction object of the modified service.

21.1.1.8 &remainingDelay

The &remainingDelay field exists only for modifier Event Enrollment objects. It shall contain either the value
of the time in seconds for which the MMS-user requesting the modifier Event Enrollment object is willing to wait
for the specified Event Condition transitions to occur or the value forever. If this field has the value forever,
the acceptable delay is infinite.

21.1.1.9 ¬ificationLost

The ¬ificationLost field exists only for notification Event Enrollment objects. The value of this field
shall be true if completion of the Procedure for Event Transition Processing has been inhibited due to resource
limitations at the MMS server, or if a notification cannot be sent due to the inability of the MMS server to
establish an application association for Event Enrollment objects having a value for the &duration field of
permanent. Otherwise, the value of the ¬ificationLost field shall be false.

21.1.1.10 &eventAction

The &eventAction field exists only for notification Event Enrollment objects. Its value may be undefined,
indicating that the Event Enrollment requests only an EventNotification, or it may refer to an Event Action object,
indicating that the Event Enrollment requests an EventNotification containing the result of execution of the
specified Event Action. In the case that the Event Action object referenced by the &eventAction field becomes
unavailable, for example through the deletion of a Domain (if the Event Action object is Domain specific) or
termination of an application association (if the Event Action object is AA-specific), the value of this field shall
become undefined.

21.1.1.11 &duration

The &duration field exists only for notification Event Enrollment objects. Its value shall indicate the
duration of the Event Enrollment object and may have either of two values:

current - indicates that the Event Enrollment object is defined for the life of the application association over
which the Event Enrollment object was defined.

permanent -indicates that the Event Enrollment object is defined for the life of the VMD unless explicitly
deleted.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved290

 EE-Duration ::= INTEGER {
current (0),

 permanent (1) } (0..1)

21.1.1.12 &clientApplication

The &clientApplication field exists only for notification Event Enrollment objects. It contains the
identification of the enrolled client application and is of type ApplicationReference.

21.1.1.13 &aaRule

NOTE In the following subclause "required" acknowledgements are acknowledgements that are required by this part of ISO
9506. "Allowed" acknowledgements are acknowledgements that may, at the discretion of the MMS-user issuing the
acknowledgement, be transmitted to the MMS-user issuing the Event Notification, but they have the effect only of
updating the &timeActiveAck field, or &timeIdleAck field, as appropriate, of the specified Event Enrollment object.

 AlarmAckRule ::= INTEGER {
none (0),
simple (1),
ack-active (2),
ack-all (3) } (0..3)

The &aaRule field exists only for a notification Event Enrollment object that reference a monitored
Event Condition object. It indicates the level of acknowledgement required for EventNotification service
instances generated as a result of the Event Enrollment.

The value of this attribute is also considered in determining whether or not the Event Enrollment object will be
included in alarm enrollment summaries (see 18.6).

This field contains one of the following values:

21.1.1.13.1 none

Acknowledgements of an Event Notification generated by this Event Enrollment object are allowed but not
required. If an acknowledgement of an Event Notification is received, it has no effect on the &ackState field of
the Event Enrollment object.

21.1.1.13.2 simple

Acknowledgements of an Event Notification generated by this Event Enrollment object are allowed but not
required. If an acknowledgement of an Event Notification reporting a transition to the active state is received,
it causes a change in the &ackState field of the Event Enrollment object. Transitions to other states have no effect
on the &ackState field of the Event Enrollment object.

21.1.1.13.3 ack-active

Acknowledgements of an Event Notification generated by this Event Enrollment object reporting a transition to
the active state are required. Acknowledgements of an Event Notification generated by this Event Enrollment
object reporting a transition to a state other than the active state are allowed but not required. If an
acknowledgement of an Event Notification reporting a transition to the active state is received, it causes a
change in the &ackState field of the Event Enrollment object. Transitions to other states have no effect on the
&ackState field of the Event Enrollment object.

21.1.1.13.4 ack-all

Acknowledgements of an Event Notification generated by this Event Enrollment object are required. If an
acknowledgement of an Event Notification reporting a transition to the active state or to the idle is received,
it causes a change in the &ackState field of the Event Enrollment object. Transitions to other states have no effect
on the &ackState field of the Event Enrollment object.

NOTE Acknowledgement are never be required for an event notification specifying a transition into or out of the
disabled state.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 291

21.1.1.14 &timeActiveAck

The &timeActiveAck field exists only for notification Event Enrollment objects that reference a
monitored Event Condition object. The value of the &timeActiveAck field is only meaningful if the value of
the &aaRule field is not equal to none. The &timeActiveAck field records the time (date and time of day or Time
Sequence Identifier) at which an acknowledgement for the most recently detected transition of the Event
Condition object to the active state was received from the enrolled client. If this acknowledgement has not
been received, the value of the &timeActiveAck field is undefined.

21.1.1.15 &timeIdleAck

The &timeIdleAck field exists only for notification Event Enrollment objects that reference a monitored
Event Condition object. The value of the &timeIdleAck field is only meaningful if the value of the &aaRule field
is not equal to none. The &timeIdleAck field records the time (date and time of day or Time Sequence Identifier)
at which an acknowledgement for the most recently detected transition of the Event Condition object to the idle
state was received from the enrolled client. If this acknowledgement has not been received, the value of the
&timeIdleAck field is undefined.

21.1.1.16 &ackState

The &ackState field indicates the state of the Event Enrollment object with respect to acknowledgements. The
possible values of the &state field depend on the value of the &aaRule field.

21.1.1.16.1 acked

All required acknowledgements of event notifications have been received.

21.1.1.16.2 noAckA

The &timeActiveAck field of this Event Enrollment object is either undefined or has a value earlier than the
&timeToActive field of the Event Condition referenced by the &eventCondition field of the Event Enrollment
object.

21.1.1.16.3 noAckI

The &timeIdleAck field of this Event Enrollment object is either undefined or has a value earlier than the
&timeToIdle field of the Event Condition referenced by the &eventCondition field of the Event Enrollment object.

21.1.1.17 &lastState

The &lastState field exists only for notification Event Enrollment objects. If the Event Condition object
referenced by the &eventCondition field of the Event Enrollment has become unavailable, either through the
deletion of a Domain or the loss of an application association, the &lastState field reflects the last known state of
the Event Condition object. Otherwise, the meaning of this field is undefined.

21.1.1.18 &displayEnhancement

This field specifies the type of the &displayEnhancement field of the Event Enrollment object. This field is
present only if the cspi parameter CBB has been negotiated. If the value of this field is text, the
&displayEnhancement field is of type character string. If the value of this field is number, the
&displayEnhancement is of type integer. If the value of this field is none, the &displayEnhancement field is
NULL.

21.1.2 The Event Enrollment State diagrams

The state diagrams of Figure 21 to Figure 24 describe the &ackState of an Event Enrollment. The arcs shown in
the various Event Enrollment state diagrams are defined as follows.

1. Receive AlterEventConditionMonitoring indication specifying the Enabled parameter equal to true while
the variable referenced by the Event Condition's &monitoredVariable field is true, or a locally defined
event is pending.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved292

2. Receive AlterEventConditionMonitoring indication specifying the Enabled parameter equal to true while
the variable referenced by the Event Condition's &monitoredVariable field is false, or a locally defined
event is not pending.

3. The variable referenced by the Event Condition's &monitoredVariable field becomes true or a locally
defined event is detected.

4. The variable referenced by the Event Condition's &monitoredVariable field becomes false or the condition
causing a locally defined event is cleared.

5. Receive AcknowledgeEventNotification indication for current state and time of transition.

6. Receive AcknowledgeEventNotification indication for active state while in the idle state and time is
equal to Event Condition's &timeToActive field.

7. Receive AlterEventConditionMonitoring indication specifying the Enabled parameter equal to false.

Additional arcs are possible if an AlterEventEnrollment indication is processed that changes the value of the
&aaRule field. In this case the state diagram regulating the event enrollment is also changed.

Receipt of an indication for any of the following services does not change the state of an Event Enrollment.

GetEventEnrollmentAttributes
GetAlarmSummary

GetAlarmEnrollmentSummary
ReportEventEnrollmentStatus

Arcs indicating transitions that do not cause a state change are not shown.

Receipt of a DefineEventEnrollment indication establishes a new Event Enrollment. This is modelled as a
transition from a non-existent state. Receipt of a DeleteEventEnrollment indication is modelled as a transition
from the current state to the non-existent state. Arcs indicating transitions to or from the non-existent state are not
shown.

21.1.2.1 &aaRule equals none

Figure 21 contains the state diagram for an Event Enrollment specifying the &aaRule field equal to none.

Disabled

Idle Active

12

3

4

7 7

Figure 21 - State Diagram for &alarmAcknowledgmentRule = none

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 293

21.1.2.2 &aaRule equals simple

Figure 22 contains the state diagram for an Event Enrollment specifying the &aaRule field equal to simple.

Disabled

Idle

12

3

4

7 7

Active
No-ACK-A

Active
Acked

4 5

7

Figure 22 - State Diagram for &alarmAcknowledgmentRule = simple

21.1.2.3 &aaRule equals ack-active

Figure 23 contains the state diagram for an Event Enrollment specifying the &aaRule field equal to ack-active.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved294

Disabled

Idle
Acked

12

3

4

7 7

Active

No-ACK-A

Idle
No-Ack-A

Active
Acked

3

4

6

7

4

5 7

Figure 23 - State Diagram for &alarmAcknowledgmentRule = ack-active

21.1.2.4 &aaRule equals ack-all

Figure 24 contains the state diagram for an Event Enrollment specifying the &aaRule field equal to ack-all.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 295

Disabled

Idle
Acked

12

3

4

7 7

Active
No-ACK-A

Idle
No-Ack-A

Active
Acked

3

4

7
5 7

Idle
No-Ack-I

5

6

4

7

Figure 24 - State Diagram for &alarmAcknowledgmentRule = ack-all

21.2 DefineEventEnrollment service

The DefineEventEnrollment service is used by an MMS client to request the creation of an Event Enrollment
object at a VMD. This service has the effect that the MMS server add the requesting MMS client or another "third
party" client to the list of users for which the Procedure for Event Transition Processing (see 18.1.1) is to be
executed as a result of a specified transition or set of transitions of an Event Condition object.

21.2.1 Structure

The structure of the component service primitives is shown in Table 115.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved296

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Event Enrollment Name
 Event Condition Name
 Event Condition Transactions
 Alarm Acknowledgement Rule
 Event Action Name
 Client Application
 Display Enhancement
 String
 Index
 No Enhancement

Result(+)

Result(-)
 Error Type
 Object Not Defined

M
M
M
M
M
U
U
M
S
S
S

M(=)
M(=)
M(=)
M(=)
M(=)
U(=)
U(=)
M(=)
S(=)
S(=)
S(=)

S

S
M
C

S(=)

S(=)
M(=)
C(=)

tpy
 cspi
des
dei

Table 115 - DefineEventEnrollment service

21.2.1.1 Argument

This parameter shall convey the parameters of the DefineEventEnrollment service request.

21.2.1.1.1 Event Enrollment Name

This parameter, of type Object Name, shall be the value of the &name field of the newly created Event Enrollment
object. This name shall be unique among all Event Enrollment objects with identical scope (VMD-specific,
Domain-specific or AA-Specific).

21.2.1.1.2 Event Condition Name

This parameter, of type Object Name, shall contain the name of an Event Condition object to be referenced by the
&eventCondition field of the newly created Event Enrollment.

21.2.1.1.3 Event Condition Transitions

The Event Condition Transitions parameter, of type Transitions, shall specify the set of transitions of the Event
Condition for which invocation of the EventNotification service is requested. The allowed values for this field are
specified in 21.1.1.

21.2.1.1.4 Alarm Acknowledgement Rule

The Alarm Acknowledgement Rule parameter, of type AlarmAckRule, shall specify the value of the Event
Enrollment object's &aaRule field. The allowed values for this field are given in 21.1.1.

21.2.1.1.5 Event Action Name

This optional parameter, of type Object Name, shall specify the value of the &name field of an Event Action
object representing an action to be executed when the specified transition of the Event Condition object occurs.
The result of this execution shall be included in EventNotification requests initiated as a result of this Event
Enrollment.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 297

21.2.1.1.6 Client Application

The semantics and value of this optional parameter, of type Application Reference, are specified in 21.1.1. If
included, it shall specify a client application, which may be the requesting MMS client or a third-party application,
to be enrolled for the receipt of Event Notifications resulting from the newly created Event Enrollment.

This parameter shall not be specified unless the tpy conformance block is supported.

21.2.1.1.6.1 Display Enhancement

The parameter may be present only if the cspi CBB has been negotiated. If this parameter is included, one of the
following parameters shall be selected.

21.2.1.1.6.1.1 String

This choice indicates that the string form of the Display Enhancement parameter is present. This selection may be
made only if the des CBB has been negotiated.

21.2.1.1.6.1.2 Index

This choice indicates that the numeric form of the Display Enhancement parameter is present. This selection may
be made only if the dei CBB has been negotiated.

21.2.1.1.6.1.3 No Enhancement

This choice specifies that no Display Enhancement is present. This parameter shall be selected if neither des nor
dei has been negotiated.

NOTE This choice may also be made (user option) if either des or dei has been negotiated.

21.2.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

21.2.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, shall provide the reason for failure. When failure is indicated, the following parameter shall
be returned.

21.2.1.3.1 Object Not Defined

This parameter, of type Object Name, shall be present if the error pertains to the non-existence of the Event
Condition object specified by the Event Condition Name parameter or the Event Action object specified by the
Event Action Name parameter. If the Event Condition object does not exist, this parameter shall contain the name
of the Event Condition Name parameter. If the Event Condition object exists but the Event Action object does not
exist, this parameter shall contain the Event Action Name parameter. Otherwise, this parameter shall not be
present.

21.2.2 Service Procedure

21.2.2.1 Preconditions

The MMS server shall perform the following actions:

a) verify that no Event Enrollment object exists with the same name as the Event Enrollment Name
parameter;

b) verify the existence of an Event Condition object with the same name as the Event Condition Name
parameter;

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved298

c) verify the existence of an Event Action object with the same name as the Event Action Name parameter, if
present;

d) verify that all the conditions in the Access Control List object referenced by the &accessControl field of
the VMD are satisfied for the service class = LOAD.

e) If the Client Application parameter is present and different from the MMS client requesting the Define
Event Enrollment service, verify that the Event Condition Name parameter does not reference an Event
Condition object of AA-scope;

f) if the Client Application parameter is present and different from the MMS client requesting the Define
Event Enrollment service, verify that the Event Action Name parameter (if present) does not reference an
Event Action object of AA-scope.

If either the Event Condition object or the Event Action object does not exist, the MMS server shall issue a
Result(-) response with the Error Class of ACCESS, Error Code of OBJECT-NON-EXISTENT, and Object Not
Defined parameter containing the value of the name of the object that did not exist.

If any other condition is not satisfied, the MMS server shall issue a Result(-) response with an error class =
ACCESS and error code = OBJECT-ACCESS-DENIED.

21.2.2.2 Actions

The MMS server shall create a notification Event Enrollment object initialized as follows:

a) &name - initialized to the value provided in the Event Enrollment Name parameter;

b) &accessControl - initialized to refer to an Access Control List object that will report the value of MMS
Deletable as true (see 9.1.4). The predefined symbol 'M_Deletable' (see 25.3.2.1) may be used for this
purpose.

c) &eeClass - initialized to the value notification.

d) &eventCondition - initialized to reference the Event Condition object identified by the value of the Event
Condition Name parameter.

e) &ecTransitions - initialized to the value of the Event Condition Transitions parameter.

f) &aAssociation - The value of the &aAssociation field shall be dependent on the presence or absence of the
Client Application parameter. The following rules shall apply to determine the value of the &aAssociation
field:

1) If the Client Application parameter is not present in the service request, this field shall be initialized
to a value identifying the application association over which the DefineEventEnrollment request
was received.

2) If the Client Application parameter is present in the service request and the client to be enrolled is
the MMS client requesting the DefineEventEnrollment service, this field shall be initialized to a
value identifying the application association over which the DefineEventEnrollment request was
received.

 3) If the Client Application parameter is present in the service request, and the client to be enrolled is
not the MMS client requesting the DefineEventEnrollment service and an application association to
this Client Application exists, this field shall be initialized to a value identifying the application
association with this Client Application.

4) If the Client Application parameter is present in the service request, and the client to be enrolled is
not the MMS client requesting the DefineEventEnrollment service and an application association to
this Client Application does not exist, this field shall be undefined.

g) ¬ificationLost - initialized to the value false.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 299

h) &eventAction - if the Event Action Name parameter is present in the service request, this field shall be
initialized to reference the Event Action object identified by the value of the Event Action Name
parameter. Otherwise, it shall be undefined.

i) &duration - if the Client Application parameter was specified, this attribute shall be initialized to the value
permanent. Otherwise, it shall be initialized to the value current.

j) &clientApplication - initialized to the value of the Client Application parameter, if specified. Otherwise
this field shall be initialized to identify the client application for the application association over which this
request was received.

k) &aaRule - initialized to the value of the Alarm Acknowledgement Rule parameter.

l) &timeActiveAck - initialized to the value undefined.

m) &timeIdleAck - initialized to the value undefined.

n) &ackState - initialized to acked.

o) If the Display Enhancement parameter is present and the String choice of Display Enhancement parameter
has been selected, the text choice of the &displayEnhancement field of the Event Condition object shall
be selected and its value shall be the value of String parameter.

p) If the Display Enhancement parameter is present and the Index choice of the Display Enhancement
parameter has been selected, the number choice of &displayEnhancement field of the Event Condition
object shall be selected and its value shall be the value of the Index parameter.

q) If the Display Enhancement parameter is present and the No Enhancement choice of the Display
Enhancement parameter has been selected, the none choice of &displayEnhancement field of the Event
Condition object shall be selected.

A Result(+) shall be returned, indicating that the Event Condition object has been created.

21.3 DeleteEventEnrollment service

The DeleteEventEnrollment service is used by an MMS client to request that an MMS server delete one or more
notification Event Enrollment objects.

21.3.1 Structure

The structure of the component service primitives is shown in Table 116.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Scope of Delete
 List of Event Enrollment Names
 Event Condition Name
 Event Action Name

Result(+)
 Candidates Not Deleted

Result(-)
 Error Type

M
M
S
S
S

M(=)
M(=)
S(=)
S(=)
S(=)

S
M

S
M

S(=)
M(=)

S(=)
M(=)

Table 116 - DeleteEventEnrollment service

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved300

21.3.1.1 Argument

This parameter shall convey the parameters of the DeleteEventEnrollment service request.

21.3.1.1.1 Scope Of Delete

The Scope Of Delete parameter shall specify the extent of delete that is requested. The Scope of Delete is
indicated by the selection of one of the following parameters.

21.3.1.1.2 List of Event Enrollment Names

If this parameter is selected, it shall specify a list of one or more Event Enrollment objects designated as
candidates for deletion.

21.3.1.1.3 Event Condition Name

If this parameter is selected, this parameter, of type Object Name, shall specify the value of the &name field of the
Event Condition object whose &EventEnrollments field is used to identify the Event Enrollment objects to be
considered for deletion. Of these Event Enrollment objects, only those whose &clientApplication field references
the requesting MMS client are designated as candidates for deletion.

21.3.1.1.4 Event Action Name

If this parameter is selected, this parameter, of type Object Name, shall specify the value of the &name field of the
Event Action object whose &EventEnrollments field is to be used to identify the Event Enrollment objects to be
considered for deletion.

21.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall include the
following parameter.

21.3.1.2.1 Candidates Not Deleted

This parameter, of type integer, shall contain a count of the number of Event Enrollment objects that were
included in the scope of Event Enrollment objects to be deleted, but that were not deleted because the conditions
required by the service procedure were not met.

21.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

21.3.2 Service Procedure

21.3.2.1 Preconditions

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the VMD are satisfied for the service class = DELETE. If this condition is not satisfied, a
Result(-) shall be returned with an error class = ACCESS and error code = OBJECT-ACCESS-DENIED.

If the Scope of Delete parameter is Event Condition Name, the MMS server shall verify that the referenced Event
Condition object exists. If this object does not exist, a Result(-) response shall be returned and the service
procedure terminated.

If the Scope of Delete parameter is Event Action Name, the MMS server shall verify that the referenced Event
Action object exists. If this object does not exist, a Result(-) response shall be returned and the service procedure
terminated.

The Candidates Not Deleted parameter shall be initialized to zero.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 301

21.3.2.2 Action Step 1

The MMS server shall prepare a list of candidate Event Enrollments for deletion. The objects on this list depend
on the selection of the Scope Of Delete parameter.

a) If the Scope of Delete parameter is the List of Event Enrollment Names, that list provides the list of
candidate Event Enrollments. For each element of that list, the MMS server shall verify

1) that the Event Enrollment object exists and

2) that the conditions in the Access Control List referenced by the Reference to Access Control List
attribute of the Event Enrollment object are satisfied for Service Class = DELETE.

If any of these conditions is not met, this Event Enrollment object shall not be included on the list of Event
Enrollment objects and the Candidates Not Deleted parameter shall be increased by one.

b) If the Scope of Delete parameter is Event Condition Name, the &EventEnrollments field of that Event
Condition provides the list of candidate Event Enrollments. For each object referenced by the
&EventEnrollments field of this Event Condition, the MMS server shall verify:

1) that the Event Enrollment object exists;

2) that the conditions in the Access Control List referenced by the &accessControl field of the Event
Enrollment object are satisfied for Service Class = DELETE; and

3) that the &clientApplication field of this Event Enrollment object references the requesting MMS
client.

If any of these conditions is not met, this Event Enrollment object shall not be included on the list of Event
Enrollment objects and the Candidates Not Deleted parameter shall be increased by one.

c) If the Scope of Delete parameter is Event Action Name, the &EventEnrollments field of that Event Action
object provides the list of candidate Event Enrollments. For each object referenced by the
&EventEnrollments field of the Event Action object the MMS server shall verify:

1) that the Event Enrollment object exists;

2) that the conditions in the Access Control List referenced by the &accessControl field of the Event
Enrollment object are satisfied for Service Class = DELETE; and

3) that the &clientApplication field of this Event Enrollment object references the requesting MMS
client.

If any of these conditions is not met, this Event Enrollment object shall not be included on the list of Event
Enrollment objects and the Candidates Not Deleted parameter shall be increased by one.

21.3.2.3 Action Step 2

For each object of the list of Event Enrollment objects, the MMS server shall execute the Procedure for Event
Enrollment Deletion (see 21.3.3). A Result(+) response shall be issued, indicating the number of candidate Event
Enrollment objects that were not deleted.

21.3.3 Procedure for Event Enrollment Deletion

The MMS server shall remove the reference to this Event Enrollment object from the &EventEnrollments field of
the Event Condition object referenced by the &eventCondition field of this Event Enrollment object.

If the &event Action field of this Event Enrollment object references an Event Action object, the MMS server
shall remove the reference to this Event Enrollment object from the &EventEnrollments field of the Event Action
object referenced by the &eventAction field of this Event Enrollment object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved302

The MMS server shall remove the reference to this Event Enrollment object from the &EventEnrollments field of
the Access Control List object referenced by the &accessControl field of this Event Enrollment object.

NOTE 1 If an Event Enrollment object having the value permanent for the &duration field is deleted, and if the MMS
server was the Calling MMS-user on the application association being used to convey event notifications for this
Event Enrollment, the MMS server may, as a local matter, issue the Conclude service on that application association.

NOTE 2 This procedure should also be executed for deletion of Event Enrollment objects that result from deletion of a
Domain or loss of an application association.

21.4 GetEventEnrollmentAttributes service

The GetEventEnrollmentAttributes service is used by an MMS client to request that an MMS server return the
values of descriptive attributes of an Event Enrollment object or a list of Event Enrollment objects that satisfy a
specified set of criteria.

21.4.1 Structure

The structure of the component service primitives is shown in Table 117.

Parameter Name Req Ind Rep Cnf CBB

Argument
 Scope of Request
 List of Event Enrollment Names
 Client Application
 Event Condition Name
 Client Application
 Event Action Name
 Client Application
 Continue After

Result(+)
 List of EE Attributes
 Event Enrollment Name
 Event Condition Name
 Event Action Name
 Client Application
 MMS Deletable
 Enrollment Class
 Duration
 Invoke ID
 Remaining Acceptable Delay
 Display Enhancement
 String
 Index
 No Enhancement
 Access Control List
 More Follows

Result(-)
 Error Type

M
M
S
S
S
U
S
U
U

M(=)
M(=)
S(=)
S(=)
S(=)
U(=)
S(=)
U(=)
U(=)

S
M
M
M
C
U
M
M
C
C
C
C
S
S
S
M
M

S
M

S(=)
M(=)
M(=)
M(=)
C(=)
U(=)
M(=)
M(=)
C(=)
C(=)
C(=)
C(=)
S(=)
S(=)
S(=)
M(=)
M(=)

S(=)
M(=)

 cspi
des
dei

aco

Table 117 - GetEventEnrollmentAttributes service

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 303

21.4.1.1 Argument

This parameter shall convey the parameters of the GetEventEnrollmentAttributes service request.

21.4.1.1.1 Scope Of Request

This parameter shall indicate the scope of Event Enrollment objects to be included in the request. The Scope Of
Request is indicated by the selection of one of the following parameters.

If this is a request to continue a previously issued request for which the Result(+) parameter of the confirm
primitive specified the value of the More Follows parameter equal to true, this parameter value shall be same as
specified in the original request.

NOTE The service parameters have been altered from those of the first edition of MMS in order to correspond more closely
with the object model. The change is reflected in a new set of derivation rules in part 2 to relate these service
parameters to the same protocol.

21.4.1.1.2 List of Event Enrollment Names

If selected, this parameter shall contain a list of values for the &name field of the Event Enrollment objects for
which the attributes are desired.

21.4.1.1.3 Client Application

If selected, this parameter, of type Application Reference, shall indicate the specific client application for which
the request is made.

21.4.1.1.4 Event Condition Name

If selected, this parameter, of type Object Name, shall contain the value of the &name field of the Event Condition
object whose &EventEnrollments field provides the list of Event Enrollment objects that shall be reported.

21.4.1.1.4.1 Client Application

If included, this parameter, of type Application Reference, limits the results to those Event Enrollment objects
specified in the &EventEnrollments field of the Event Condition object for which the specified client is enrolled.

21.4.1.1.5 Event Action Name

If selected, this parameter, of type Object Name, shall contain the value of the &name field of the Event Action
object whose &EventEnrollments field provides the list of Event Enrollment objects that shall be reported.

21.4.1.1.5.1 Client Application

If included, this parameter, of type Application Reference, limits the results to those Event Enrollment objects
specified in the &EventEnrollments field of the Event Action object for which the specified client is enrolled.

21.4.1.1.6 Continue After

If this is a request to continue a previously issued request for which the Result(+) parameter of the confirm
primitive specified the value of the More Follows parameter equal to true, this parameter shall be specified.
Otherwise, it shall be omitted. If specified, this parameter shall contain the value of the Event Enrollment Name
parameter, of type Object Name, from the last entry in the List Of EE Attributes parameter taken from the confirm
primitive for which continuation is desired.

21.4.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved304

21.4.1.2.1 List of EE Attributes

The List of EE Attributes parameter shall contain a list composed of descriptive attributes of zero or more Event
Enrollment objects satisfying the criteria of the request primitive. Each entry in the list shall contain the following
parameters.

21.4.1.2.1.1 Event Enrollment Name

This parameter, of type Object Name, shall contain the value of the Event Enrollment object's &name field.

21.4.1.2.1.2 Event Condition Name

This parameter, of type Object Name, shall contain the value of the &name field of the Event Condition object
referenced by the &eventCondition field of the Event Enrollment object. If the referenced Event Condition object
has become unavailable, for example, as a result of deletion of a Domain or loss of an application association, this
parameter shall have the value UNDEFINED.

21.4.1.2.1.3 Event Action Name

This parameter, of type Object Name, shall contain the value of the &name field of the Event Action object
referenced by the Event Enrollment object's &eventAction field if present. If the &eventAction field is not present
in the Event Enrollment object, this parameter shall be omitted. If the &eventAction field is present but the Event
Action object has become unavailable, for example, as a result of deletion of a Domain or loss of an application
association, this parameter shall have the value UNDEFINED, and shall be included. If the &eeClass field of the
Event Enrollment object is modifier, this parameter shall be omitted.

21.4.1.2.1.4 Client Application

If the &clientApplication field of the Event Enrollment does not specify the requesting MMS client, this
parameter, of type Application Reference, shall contain the value of the Event Enrollment object's
&clientApplication field. Otherwise, this parameter shall be omitted. If the &eeClass field of the Event
Enrollment object is modifier, this parameter shall be omitted.

21.4.1.2.1.5 MMS Deletable

This parameter, of type boolean, shall indicate whether (true) or not (false) the Event Enrollment object may be
deleted using the DeleteEventEnrollment service. Subclause 9.1.4 specifies the value to be returned by this
parameter.

21.4.1.2.1.6 Enrollment Class

This parameter, of type EE-Class, shall contain the value of the Event Enrollment object's &eeClass field.

21.4.1.2.1.7 Duration

This parameter, of type EE-Duration, shall contain the value of the Event Enrollment object's &duration field. If
the &eeClass field of the Event Enrollment object does not contain the value notification, this parameter
shall be omitted.

21.4.1.2.1.8 Invoke ID

This parameter, of type integer, shall contain the value of the &invokeID field of the Event Enrollment object. If
the &eeClass field of the Event Enrollment object does not contain the value modifier, this parameter shall be
omitted.

21.4.1.2.1.9 Remaining Acceptable Delay

This optional parameter, of type integer, shall contain the value of the &remainingDelay field of the Event
Enrollment object if present. If the &eeClass field of the Event Enrollment object contains the value modifier
and this parameter is not present, an unbounded delay is implied. If the &eeClass field of the Event Enrollment
object does not contain the value modifier, this parameter shall be omitted.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 305

21.4.1.2.1.10 Display Enhancement

This parameter shall contain the value of the &displayEnhancement field of the Event Condition object. This
parameter shall not appear unless the cspi CBB has been negotiated. Depending on its value, one of the
following parameters shall be selected.

21.4.1.2.1.10.1 String

This parameter, of type character string, is the string form of the Display Enhancement parameter. This parameter
may not be selected unless the des CBB has been negotiated.

21.4.1.2.1.10.2 Index

This parameter, of type integer, is the numeric form of the Display Enhancement parameter. This parameter may
not be selected unless the dei CBB has been negotiated.

21.4.1.2.1.10.3 No Enhancement

This parameter, of type null, specifies that no Display Enhancement is present.

21.4.1.2.1.11 Access Control List

This parameter, of type Identifier, shall indicate the &name field of the Access Control List object that controls
access to this Event Enrollment object. This parameter shall not appear unless the aco parameter CBB has been
negotiated.

21.4.1.2.2 More Follows

This parameter, of type boolean, shall have the value true if this response does not contain attribute values from
the last of the requested Event Enrollment objects. Otherwise, it shall be false.

21.4.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

21.4.2 Service Procedure

21.4.2.1 Preconditions

None.

21.4.2.2 Action Step 1

The MMS server shall prepare a list of Event Enrollments whose attributes are to be returned. The extent of this
list depends on the value of the Scope Of Request parameter. In each of the service procedures (specified below)
the number of Event Enrollment objects whose attributes may be returned in the List of EE Attributes parameter in
a single service response may be limited by local restrictions. If the response does not contain the last of the
requested Event Enrollment objects, the More Follows parameter shall be set to the value true in the response
primitive. Otherwise, the value of the More Follows parameter shall be false.

21.4.2.2.1 Scope of Request is List of Event Enrollment Names

The List of Event Enrollment Names parameter specifies the list of the Event Enrollment objects whose attributes
are to be returned.

21.4.2.2.2 Scope Of Request is Client Application

The list of Event Enrollment objects whose attributes are to be returned shall be constructed as follows:

a) If the Client Application parameter identifies the MMS client of this service request, for each application
association object referenced by the &Associations field of the VMD,

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved306

for each of the Event Condition objects referenced by the &EventConditions field of that
application association,

for each Event Enrollment object referenced by the &EventEnrollments field of that Event
Condition object, if the Client Application parameter matches the &clientApplication field
of that Event Enrollment object, include that Event Enrollment object in the list.

b) For each Event Condition object referenced by the &EventConditions field of the VMD,

for each Event Enrollment object referenced by the &EventEnrollments field of that Event
Condition object, if the Client Application parameter matches the &clientApplication field of that
Event Enrollment object, include that Event Enrollment object in the list.

c) for each Domain object referenced by the &Domains field of the VMD,

for each of the Event Condition objects referenced by the &EventConditions field of that Domain,

for each Event Enrollment object referenced by the &EventEnrollments field of that Event
Condition object, if the Client Application parameter matches the &clientApplication field
of that Event Enrollment object, include that Event Enrollment object in the list.

The ordering of the Event Conditions of this procedure is prescribed in 5.4.2; the ordering of the Event
Enrollments within each Event Condition is also prescribed in 5.4.2.

21.4.2.2.3 Scope Of Request is Event Condition

If the Client Application parameter is specified, the list shall contain the Event Enrollments referenced by the
&EventEnrollments field of the Event Condition object specified by the Event Condition Name parameter whose
&clientApplication field (of the Event Enrollment) matches the Client Application parameter. If the Client
Application parameter is not specified, the list is the entire &EventEnrollments field of the Event Condition object
specified by the Event Condition Name parameter.

21.4.2.2.4 Scope Of Request is Event Action

If the Client Application parameter is specified, the list shall contain the Event Enrollments referenced by the
&EventEnrollments field of the Event Action object specified by the Event Action Name parameter whose
&clientApplication field (of the Event Enrollment) matches the Client Application parameter. If the Client
Application parameter is not specified, the list is the entire &EventEnrollments field of the Event Action object
specified by the Event Action Name parameter.

21.4.2.3 Action Step 2

If the Continue After parameter is present in the service indication, the MMS server shall begin the response at the
Event Enrollment object following the object indicated by the Continue After parameter. Otherwise, the MMS
server shall begin at the beginning of the list.

The MMS server shall return the attributes of one or more Event Enrollments from this list. The decision about
the number of attribute sets to be included in the response is a local matter. If the MMS server terminates the
response before the list is exhausted, it shall include a More Follows parameter of true; otherwise it shall return a
More Follows parameter of false. A Result(+) shall be returned.

NOTE In a well formed VMD, there should be no duplicates in the list prepared in this manner. Each Event Enrollment is
associated with one and only one Event Condition and/or Event Action. It is a local matter of what action to take if
this list contains duplicates. Reinitialization of the system may be required.

21.5 ReportEventEnrollmentStatus service

The ReportEventEnrollmentStatus service is used by an MMS client to obtain the status of a single notification
Event Enrollment object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 307

21.5.1 Structure

The structure of the component service primitives is shown in Table 118.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Event Enrollment Name

Result(+)
 Event Condition Transitions
 Notification Lost
 Duration
 Alarm Acknowledgement Rule
 Current State

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M
M
C
M

S
M

S(=)
M(=)
M(=)
M(=)
C(=)
M(=)

S(=)
M(=)

Table 118 - ReportEventEnrollmentStatus service

21.5.1.1 Argument

This parameter shall convey the parameter of the ReportEventEnrollmentStatus service request.

21.5.1.1.1 Event Enrollment Name

This parameter, of type Object Name, shall contain the value of the &name field of the Event Enrollment object
for which the ReportEventEnrollmentStatus service is requested.

21.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

21.5.1.2.1 Event Condition Transitions

This parameter, of type Transitions, shall contain the value of the Event Enrollment object's &ecTransitions field.

21.5.1.2.2 Notification Lost

This parameter, of type boolean, shall contain the value of the Event Enrollment object's ¬ificationLost field.

21.5.1.2.3 Duration

This parameter, of type EE-Duration, shall contain the value of the Event Enrollment object's &duration field.

21.5.1.2.4 Alarm Acknowledgement Rule

This parameter, of type AlarmAckRule, shall contain the value of the Event Enrollment object's &aaRule field.

21.5.1.2.5 Current State

This parameter, of type EE-State, depends on the value of the &aaRule field of the Event Enrollment object and
shall reflect the value of the &ecState field of the Event Condition object referenced by the &eventCondition field

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved308

of the Event Enrollment object and the value of the &ackState field of the Event Enrollment object. The value of
this parameter is determined as follows:

a) if the value of the &ecState field is disabled, the parameter shall be DISABLED;

b) if the value of the &ecState field is active,

1) if the value of the &aaRule field is none, the parameter shall be ACTIVE;

2) otherwise,

i) if the value of the &ackState field is noAckA, the parameter shall be ACTIVE-NO-ACK-
A;

ii) if the value of the &ackState field is acked, the parameter shall be ACTIVE-ACKED;

c) if the value of the &ecState field is idle,

1) if the value of the &aaRule field is none or simple, the parameter is IDLE;

2) if the value of the &aaRule field is ack-active,

i) if the value of the &ackState field is noAckA, the parameter is IDLE-NO-ACK-A;

ii) if the value of the &ackState field is acked, the parameter is IDLE-ACKED;

3) if the value of the &aaRule field is ack-all,

i) if the value of the &ackState field is noAckI, the parameter is IDLE-NO-ACK-I;

ii) if the value of the &ackState field is noAckA, the parameter is IDLE-NO-ACK-A;

i) if the value of the &ackState field is acked, the parameter is IDLE-ACKED.

If the Event Condition object has become undefined, as a result of a deletion of a Domain or loss of application
association, the value of the &lastState field of the Event Enrollment object shall be used in place of the &ecState
field in the determination of this parameter.

21.5.1.3 Result(-)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

21.5.2 Service Procedure

21.5.2.1 Preconditions

If the Event Enrollment object specified by the Event Enrollment Name parameter does not exist, the MMS server
shall return a Result(-) response.

21.5.2.2 Actions

The MMS server shall issue a Result(+) response, containing the current values for the specified Event Enrollment
object's attributes and derived parameters.

21.6 AlterEventEnrollment service

The AlterEventEnrollment service is used by an MMS client to request that the MMS server replace the value of
the &ecTransitions field, the value of the &aaRule field, the value of the &displayEnhancement field, or two or
more of these fields of an existing notification Event Enrollment object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 309

21.6.1 Structure

The structure of the component service primitives is shown in Table 119.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Event Enrollment Name
 Event Condition Transitions
 Alarm Acknowledgement Rule
 Display Enhancement
 String
 Index
 No Enhancement

Result(+)
 Current State
 Transition Time

Result(-)
 Error Type

M
M
U
U
C
S
S
S

M(=)
M(=)
U(=)
U(=)
C(=)
S(=)
S(=)
S(=)

S
M
M

S
M

S(=)
M(=)
M(=)

S(=)
M(=)

cspi
des
dei

Table 119 - AlterEventEnrollment service

21.6.1.1 Argument

This parameter shall convey the parameters of the AlterEventEnrollment service request.

21.6.1.1.1 Event Enrollment Name

This parameter, of type Object Name, shall contain the value of the &name field of the notification Event
Enrollment object that is to be modified.

21.6.1.1.2 Event Condition Transitions

The Event Condition Transitions parameter, of type Transitions, shall specify the set of transitions of the Event
Condition object for which invocation of the Procedure for Event Transition Processing is requested. The allowed
values for this parameter are specified in 21.1.1.

Either this parameter, the Alarm Acknowledgement Rule parameter, the Display Enhancement parameter, or two
or more, shall be specified.

21.6.1.1.3 Alarm Acknowledgement Rule

The Alarm Acknowledgement Rule parameter, of type AlarmAckRule, shall specify the new value of the Event
Enrollment object's &aaRule field. The semantics and allowed values for this parameter are given in 21.1.1.

This parameter shall not be present if the referenced Event Condition object is a network-triggered Event
Condition.

Either this parameter, the Event Condition Transitions parameter, the Display Enhancement parameter, or two or
more, shall be specified.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved310

21.6.1.1.3.1 Display Enhancement

This parameter indicates that the &displayEnhancement field of the Event Enrollment shall be altered by this
service. This parameter shall not appear unless the cspi CBB has been negotiated. If this parameter is present,
one of the following parameters shall be selected.

Either this parameter, the Event Condition Transitions parameter, the Alarm Acknowledgement Rule parameter, or
two or more, shall be specified.

21.6.1.1.3.1.1 String

This parameter, of type character string, is the string form of the Display Enhancement parameter. This selection
may be made only if the des CBB has been negotiated.

21.6.1.1.3.1.2 Index

This parameter, of type integer, is the numeric form of the Display Enhancement parameter. This selection may be
made only if the dei CBB has been negotiated.

21.6.1.1.3.1.3 No Enhancement

This parameter, of type null, specifies that no Display Enhancement is present. This parameter shall be selected if
neither des nor dei has been negotiated.

NOTE This parameter may also be selected if either des or dei has been negotiated.

21.6.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

21.6.1.2.1 Current State

This parameter, of type EE-State, depends on the value of the &aaRule field of the Event Enrollment object and
shall reflect the value of the &ecState field of the Event Condition object referenced by the &eventCondition field
of the Event Enrollment object and the value of the &ackState field of the Event Enrollment object. The value of
this parameter is specified in 21.5.1.2.5.

21.6.1.2.2 Transition Time

This parameter shall contain the time (date and time of day or Time Sequence Identifier) at which the transition to
the current value of the &ackState of the Event Enrollment occurred. If execution of this procedure resulted in an
alteration of the value of the &ackState field, this parameter shall contain the time at which the alteration occurred.
Otherwise, this parameter shall be equal to the value of the &timeToIdle field or the value of the &timeToActive
field of the Event Condition object referenced by the &eventCondition field of the Event Enrollment object,
whichever is later. If the value of the &eventCondition field of the Event Enrollment object is undefined, the
value of this parameter shall be UNDEFINED.

21.6.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

21.6.2 Service Procedure

21.6.2.1 Preconditions

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the VMD are satisfied for the service class = LOAD.

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the Event Enrollment object are satisfied for the service class = LOAD.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 311

If any of these conditions is not satisfied, the service shall fail and a Result(-) shall be returned.

21.6.2.2 Actions

The MMS server shall replace the value of its &ecTransitions field, the value of its &aaRule field, or the value of
the &displayEnhancement field, or two or all of these fields, with the values specified in the Event Condition
Transitions, Alarm Acknowledgement Rule, and Display Enhancement parameters, respectively.

If the value of the Alarm Acknowledgement Rule parameter is not equal to the value of the &aaRule field prior to
this service procedure, the &ackState field of the Event Enrollment object may be altered. Following the change
to the &aaRule field, the &ackState field of the Event Enrollment object shall be determined as follows:

a) If the &aaRule field is none or simple, set the &ackState field of the Event Enrollment to acked.

b) If the &aaRule field is ack-active, and the &ecState field of the referenced Event Condition object is
active or idle,

1) If the &timeActiveAck field is undefined, set the &ackState field of the Event Enrollment
object to noAckA;

2) Otherwise, set the &ackState field of the Event Enrollment object to acked.

c) If the &aaRule field is ack-all,

1) If the &timeActiveAck field is undefined and the &ecState field of the referenced Event
Condition object is active or idle, set the &ackState field of the Event Enrollment object to
noAckA;

2) Otherwise, if the &timeIdleAck field is undefined and the &ecState field of the referenced
Event Condition object is idle, set the &ackState field of the Event Enrollment object to
noAckI;

3) Otherwise, set the &ackState field of the Event Enrollment object to acked.

If the Display Enhancement parameter is present, the value of the &displayEnhancement field of the Event
Enrollment object shall be altered. If String is selected, the &displayEnhancement field of the Event Enrollment
shall be set to the value of the String parameter. If Index is selected, the &displayEnhancement shall be set to the
value of the Index parameter. If No Enhancement is selected, the &displayEnhancement shall be set to none.

The MMS server shall return a Result(+) response containing the Current State and Transition Time parameters.

22 Event Condition List services

22.1 Event Condition Lists

This clause provides an object model for the following object:

EVENT-CONDITION-LIST

This clause specifies the following services:

DefineEventConditionList
DeleteEventConditionList
AddEventConditionListReference
RemoveEventConditionListReference

GetEventConditionListAttributes
ReportEventConditionListStatus
AlterEventConditionListMonitoring

The Event Condition List object shall be used to reference groups of Event Condition objects that are required to
be operated on as groups. Support of the recl CBB (see 8.1.3.19.3) indicates support for Event Condition Lists
that may refer to other Event Condition Lists. If this CBB is not supported, the Event Condition List may contain
only references to Event Conditions.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved312

22.1.1 The Event Condition List object

 EVENT-CONDITION-LIST ::= CLASS {
&name ObjectName,

 -- shall be unique within its range of specification (VMD, Domain, AA)
&accessControl Identifier,
&EventConditions ObjectName

IF (recl)
, &EventConditionLists ObjectName OPTIONAL,

&ReferencingEventConditionLists ObjectName OPTIONAL
ENDIF

}

22.1.1.1 &name

The &name field uniquely identifies the Event Condition List object within the VMD. An Event Condition List
name may have VMD, Domain-specific or AA-specific scope.

22.1.1.2 &accessControl

This field, of type boolean, shall indicate whether (true) or not (false) this object may be deleted through the use of
the DeleteEventConditionList service.

22.1.1.3 &EventConditions

This field identifies a set of zero or more Event Condition objects.

Because of visibility constraints, if the &name field of the Event Condition List object has VMD-specific or
Domain-specific scope, this field shall only include Event Condition objects that have VMD-specific or Domain-
specific scope. If the &name field of the Event Condition List object has AA-specific scope, this field may
include Event Condition objects of any scope.

22.1.1.4 &EventConditionLists

This field identifies a set of Event Condition List objects that are hierarchically subordinate to this Event
Condition List object. This field may be present only if the recl parameter CBB has been negotiated. This field
shall not contain circular references.

Because of visibility constraints, if the &name field of the Event Condition List object has VMD-specific or
Domain-specific scope, this field shall only include Event Condition List objects that have VMD-specific or
Domain-specific scope. If the &name field of the Event Condition List object has AA-specific scope, this field
may include Event Condition List objects of any scope.

22.1.1.5 &ReferencingEventConditionLists

This field identifies other Event Condition List objects that reference this specific Event Condition List object.
This field may be present only if the recl parameter CBB has been negotiated.

NOTE This field is necessary to fully describe the service procedures that operate on the Event Condition List object. This
field is not visible nor modifiable by MMS services.

22.2 DefineEventConditionList service

The DefineEventConditionList service is used by an MMS server to request the MMS server to create an Event
Condition List object.

22.2.1 Structure

The structure of the component service primitives is shown in Table 120.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 313

 Parameter name Req Ind Rsp Cnf CBB

 Argument
 Event Condition List Name
 List of Event Condition Names
 List of Event Condition List Names

 Result(+)

 Result(-)
 Error type
 Object in error

M
M
M
C

M(=)
M(=)
M(=)
C(=)

S

S
M
C

S(=)

S(=)
M(=)
C(=)

recl

Table 120 - DefineEventConditionList service

22.2.1.1 Argument

This parameter shall convey the parameters of the DefineEventConditionList service request.

22.2.1.1.1 Event Condition List name

This parameter, of type Object Name, shall specify the name of the Event Condition List object that is to be
created.

22.2.1.1.2 List of Event Condition names

This parameter shall identify a list of Event Condition objects to be included in the specified Event Condition List.
This list shall not be empty if recl has not been negotiated. If the scope of the Event Condition List Name
parameter is VMD-specific or Domain-specific, this parameter shall not contain an Event Condition Name whose
scope is AA-specific.

22.2.1.1.3 List of Event Condition List names

This parameter shall identify a list of Event Condition List objects to be included, by reference to each included
object, in the Event Condition List. This parameter shall not be present if the recl CBB has not been negotiated.
If the scope of the Event Condition List Name parameter is VMD-specific or Domain-specific, this parameter shall
not contain an Event Condition List Name whose scope is AA-specific.

22.2.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

22.2.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, shall provide the reason for failure. When failure is indicated, the following parameter shall
be returned.

22.2.1.3.1 Object in error

This parameter, of type Object Name, shall be present if the error concerns the nonexistence or inconsistency of an
Event Condition object specified in the List of Event Condition Names parameter, or an Event Condition List
object specified in the List of Event Condition List Names parameter. It shall provide the name of the object that
caused the error at the VMD. This parameter shall not be present if the failure of this service is not due to the
nonexistence or inconsistency of an Event Condition object or a Event Condition List object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved314

22.2.2 Service procedure

22.2.2.1 Preconditions

The MMS server shall verify that no other Event Condition List objects exist at the VMD with a &name field
equal to the value of the Event Condition List Name parameter. Otherwise the MMS server shall issue a Result(-)
response.

If any of the Event Condition objects specified in the List of Event Condition Names parameter does not exist at
the VMD, or if any of the Event Condition List objects specified in the List of Event Condition List Names
parameter does not exist at the VMD, the MMS server shall issue the Result(-) response with an Error Class of
ACCESS, Error Code of OBJECT-NON-EXISTENT, and the Object in error parameter.

If the scope of the Event Condition List Name parameter is VMD-specific or Domain-specific, and the scope of
the name of any of the Event Conditions in the List of Event Condition Names parameter or of any of the Event
Condition Lists in the List of Event Condition List Names parameter is AA-specific, the MMS server shall issue a
Result(-) response with an Error Class of DEFINITION, Error Code of OBJECT-ATTRIBUTE-INCONSISTENT,
and the Object in error parameter.

22.2.2.2 Actions

The MMS server shall create a new Event Condition List object and initialize it as follows:

a) &name - initialized to the value of the Event Condition List name parameter;

b) &accessControl - initialized to reference an Access Control List object that will report the value of MMS
Deletable as true (see 9.1.4). The predefined symbol 'M_Deletable' (see 25.3.2.1) may be used for this
purpose.

c) &EventConditions - initialized to refer to the Event Condition objects specified by the value of the List of
Event Condition Names parameter.

d) &EventConditionLists - initialized to refer to the Event Condition List objects specified by the value of the
List of Event Condition List Names parameter, if present.

e) &ReferencingEventConditionLists - initialized to an empty list.

If the List of Event Condition Names parameter is not empty, for every Event Condition Object specified in the
List of Event Condition Names parameter, the MMS server shall place a reference to the newly created Event
Condition List object in the Event Condition object's &ReferencingEventConditionLists field.

If the List of Event Condition List Names parameter is not empty, for every Event Condition List object specified
in the List of Event Condition List Names parameter, the MMS server shall place a reference to the newly created
Event Condition List object in the referenced Event Condition List object's &ReferencingEventConditionLists
field.

A Result(+) response shall be issued, indicating that the Event Condition List object was created.

22.3 DeleteEventConditionList service

The DeleteEventConditionList service is used by an MMS client to request the MMS server to delete an Event
Condition List object.

22.3.1 Structure

The structure of the component service primitives is shown in Table 121.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 315

 Parameter name Req Ind Rsp Cnf CBB

 Argument
 Event Condition List Name

 Result(+)

 Result(-)
 Error type

M
M

M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 121 - DeleteEventConditionList service

22.3.1.1 Argument

This parameter shall convey the parameters of the DeleteEventConditionList service request.

22.3.1.1.1 Event Condition List name

This parameter, of type Object Name, shall specify the &name field of the Event Condition List object that is to be
deleted.

22.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

22.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

22.3.2 Service procedure

22.3.2.1 Preconditions

The MMS server shall verify:

a) that all the conditions in the Access Control List referenced by the &accessControl field of the VMD are
satisfied for the service class DELETE (see 9.1.3);

b) that the Event Condition List object identified by the Event Condition List Name parameter exists;

c) that all the conditions in the Access Control List referenced by the &accessControl field of the Event
Condition List object are satisfied for the service class DELETE (see 9.1.3);

d) that the &ReferencingEventConditionLists field (if present) of the specified Event Condition List object is
empty.

If any of these conditions is not satisfied, a Result(-) shall be returned.

22.3.2.2 Actions

For each Event Condition object referenced in the &EventConditions field of the Event Condition List object, the
MMS server shall remove the reference to the specified Event Condition List object from the
&ReferencingEventConditionLists field of the Event Condition object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved316

For each Event Condition List object referenced in the &EventConditionLists field (if present) of the Event
Condition List object, the MMS server shall remove the reference to the specified Event Condition List object
from the &ReferencingEventConditionLists field of the Event Condition List object.

The MMS server shall remove the reference to the specified Event Condition List object from the
&EventConditionLists field of the Access Control List object referenced by the &accessControl field of the Event
Condition List object.

The MMS server shall delete the specified Event Condition List object, and return a Result(+) response.

22.4 AddEventConditionListReference service

The AddEventConditionListReference service is used by the MMS client to request the MMS server to add an
Event Condition object references, or Event Condition List object references, or both to an Event Condition List
object.

22.4.1 Structure

The structure of the component service primitives is shown in Table 122.

 Parameter Name Req Ind Rsp Cnf CBB

Argument
 Event Condition List Name
 List of Event Condition Names
 List of Event Condition List Names

 Result(+)

 Result(-)
 Error type
 Object in error

M
M
M
C

M(=)
M(=)
M(=)
C(=)

S

S
M
C

S(=)

S(=)
M(=)
C(=)

recl

Table 122 - AddEventConditionListReference service

22.4.1.1 Argument

This parameter shall convey the parameters of the AddEventConditionListReference service request.

22.4.1.1.1 Event Condition List Name

This parameter, of type Object Name, shall specify the &name field of the Event Condition List object that is to be
modified.

22.4.1.1.2 List of Event Condition Names

This parameter shall identify a list of Event Condition objects to be added to the specified Event Condition List.
This list shall not be empty if recl has not been negotiated. If the scope of the Event Condition List Name
parameter is VMD-specific or Domain-specific, this parameter shall not contain an Event Condition Name whose
scope is AA-specific.

22.4.1.1.3 List of Event Condition List Names

This parameter shall identify a list of Event Condition List objects to be added to the Event Condition List. This
parameter shall not be present if the recl CBB has not been negotiated. If the scope of the Event Condition List
Name parameter is VMD-specific or Domain-specific, this parameter shall not contain an Event Condition List
Name whose scope is AA-specific.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 317

22.4.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

22.4.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, shall provide the reason for failure. When failure is indicated, the following parameter shall
be returned.

22.4.1.3.1 Object in error

This parameter, of type Object Name, shall be present if the error concerns the nonexistence or inconsistency of an
Event Condition object specified in the List of Event Condition Names parameter, or an Event Condition List
object specified in the List of Event Condition List Names parameter. It shall provide the name of the object that
caused the error. This parameter shall not be present if the failure of this service is not due to the nonexistence or
inconsistency of an Event Condition object or a Event Condition List object.

22.4.2 Service procedure

22.4.2.1 Preconditions

The MMS server shall verify:

a) that all the conditions in the Access Control List referenced by the &accessControl field of the VMD are
satisfied for the service class LOAD (see 9.1.3);

b) that the Event Condition List object identified by the Event Condition List Name parameter exists;

c) that all the conditions in the Access Control List referenced by the &accessControl field of the Event
Condition List object are satisfied for the service class LOAD (see 9.1.3);

d) that all the Event Condition objects specified by the List of Event Condition Names parameter exist;

e) that all the Event Condition List objects specified by the List of Event Condition List Names parameter (if
present) exist;

f) if the scope of the &name field of any of the Event Condition in the List of Event Condition Names
parameter is AA-specific, that the scope of the &name field of the Event Condition List is also AA-
specific;

g) if the scope of the &name field of any of the Event Condition List in the List of Event Condition List
Names parameter (if present) is AA-specific, that the scope of the &name field of the Event Condition List
is also AA-specific;

If the Event Condition List object specified by the Event Condition List Name parameter does not exist, a Result(-)
response shall be issued with Error Class ACCESS and Error Code OBJECT-NON-EXISTENT without an Object
in error parameter.

If any of the Event Condition objects specified in the List of Event Condition Names parameter does not exist, or
if any of the Event Condition List objects specified in the List of Event Condition List Names parameter does not
exist, a Result(-) response shall be issued with Error Class ACCESS, Error Code OBJECT-NON-EXISTENT, and
the Object in error parameter.

If the scope of the Event Condition List Name parameter is VMD-specific or Domain-specific, and the scope of
the &name field of any of the Event Conditions in the List of Event Condition Names parameter or of any of the
Event Condition Lists in the List of Event Condition List Names parameter is AA-specific, a Result(-) response
shall be issued with an Error Class of DEFINITION, Error Code of OBJECT-ATTRIBUTE-INCONSISTENT,
and the Object in error parameter.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved318

Otherwise, if any other of these conditions is not satisfied, a Result(-) shall be returned without an Object in error
parameter.

22.4.2.2 Action Step 1

For every Event Condition Object specified in the List of Event Condition Names parameter, the MMS server
shall:

a) verify that the Event Condition object is not already included in the &EventConditionLists field of this
Event Condition List object; if it is included, skip the remainder of this step for this Event Condition;

b) add a reference to the specified Event Condition List object to the Event Condition object's
&ReferencingEventConditionLists field;

c) add a reference to the Event Condition object to the specified Event Condition List object's
&EventConditions field.

22.4.2.3 Action Step 2

NOTE In this subclause, the Event Condition List identified by the Event Condition List Name parameter is referred to as
the named Event Condition List; each Event Condition List object in the List of Event Condition List Names
parameter is referred to as a referenced Event Condition List.

If the List of Event Condition List Names parameter has been provided, for every Event Condition List object
specified in the List of Event Condition List Names parameter, the MMS server shall:

a) verify that the referenced Event Condition List object is not already included in the &EventConditionLists
field of the named Event Condition List object; if it is included, skip the remainder of this step for this
Event Condition List;

b) add a reference to the named Event Condition List object to the referenced Event Condition List object's
&ReferencingEventConditionLists field;

c) add a reference to the referenced Event Condition List object to the named Event Condition List object's
&EventConditionLists field.

A Result(+) response shall be issued, indicating that the Event Condition List object was modified and references
updated.

22.5 RemoveEventConditionListReference service

The RemoveEventConditionListReference service is used by an MMS client to request the MMS server to remove
Event Condition object references, or to remove Event Condition List object references, or both, from a specified
Event Condition List object.

22.5.1 Structure

The structure of the component service primitives is shown in Table 123.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 319

 Parameter Name Req Ind Rsp Cnf CBB

Argument
 Event Condition List Name
 List of Event Condition Names
 List of Event Condition List Names

 Result(+)

 Result(-)
 Error type
 Object in error

M
M
M
C

M(=)
M(=)
M(=)
C(=)

S

S
M
C

S(=)

S(=)
M(=)
C(=)

recl

Table 123 - RemoveEventConditionListReference service

22.5.1.1 Argument

This parameter shall convey the parameters of the RemoveEventConditionListReference service request.

22.5.1.1.1 Event Condition List name

This parameter, of type Object Name, shall specify the &name field of the Event Condition List object that is to be
modified.

22.5.1.1.2 List of Event Condition Names

This parameter shall identify a list of Event Condition objects to be removed from the specified Event Condition
List. This list shall not be empty if recl CBB has not been negotiated.

22.5.1.1.3 List of Event Condition List Names

This parameter shall identify a list of Event Condition List objects to be removed from the Event Condition List.
This parameter shall not be present if the recl CBB has not been negotiated.

22.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

22.5.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, shall provide the reason for failure. When failure is indicated, the following parameter shall
be returned.

22.5.1.3.1 Object in error

This parameter, of type Object Name, shall be present if the error concerns the nonexistence or inconsistency of an
Event Condition object specified in the List of Event Condition Names parameter, or an Event Condition List
object specified in the List of Event Condition List Names parameter. It shall provide the name of the object that
caused the error at the VMD. This parameter shall not be present if the failure of this service is not due to the
nonexistence or inconsistency of an Event Condition object or a Event Condition List object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved320

22.5.2.1 Preconditions

The MMS server shall verify:

a) that all the conditions in the Access Control List referenced by the &accessControl field of the VMD are
satisfied for the service class LOAD (see 9.1.3);

b) that the Event Condition List object identified by the Event Condition List Name parameter exists;

c) that all the conditions in the Access Control List referenced by the &accessControl field of the Event
Condition List object are satisfied for the service class LOAD (see 9.1.3);

d) that all the Event Condition objects specified by the List of Event Condition Names parameter exist;

e) that all the Event Condition List objects specified by the List of Event Condition List Names parameter (if
present) exist;

f) if the scope of the &name field of any of the Event Condition in the List of Event Condition Names
parameter is AA-specific, that the scope of the &name field of the Event Condition List is also AA-
specific;

g) if the scope of the &name field of any of the Event Condition List in the List of Event Condition List
Names parameter (if present) is AA-specific, that the scope of the &name field of the Event Condition List
is also AA-specific;

If the Event Condition List object specified by the Event Condition List Name parameter does not exist, a Result(-)
response shall be issued with Error Class ACCESS and Error Code OBJECT-NON-EXISTENT without an Object
in error parameter.

If any of the Event Condition objects specified in the List of Event Condition Names parameter does not exist, or
if any of the Event Condition List objects specified in the List of Event Condition List Names parameter does not
exist, a Result(-) response shall be issued with Error Class ACCESS, Error Code OBJECT-NON-EXISTENT, and
the Object in error parameter.

If the scope of the Event Condition List Name parameter is VMD-specific or Domain-specific, and the scope of
the &name field of any of the Event Conditions in the List of Event Condition Names parameter or of any of the
Event Condition Lists in the List of Event Condition List Names parameter is AA-specific, a Result(-) response
shall be issued with an Error Class of DEFINITION, Error Code of OBJECT-ATTRIBUTE-INCONSISTENT,
and the Object in error parameter.

Otherwise, if any other of these conditions is not satisfied, a Result(-) shall be returned without an Object in error
parameter.

22.5.2.2 Action Step 1

For every Event Condition Object specified in the List of Event Condition Names parameter, the MMS server
shall:

a) remove the reference to the specified Event Condition List object in the Event Condition object's
&ReferencingEventConditionLists field;

b) remove the reference to the Event Condition object in the specified Event Condition List object's
&EventConditions field.

22.5.2.3 Action Step 2

NOTE In this subclause, the Event Condition List identified by the Event Condition List Name parameter is referred to as
the named Event Condition List; each Event Condition List object in the List of Event Condition List Names
parameter is referred to as a referenced Event Condition List.

If the List of Event Condition List Names parameter has been provided, for every Event Condition List object
specified in the List of Event Condition List Names parameter, the MMS server shall:

22.5.2 Service procedure

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 321

a) remove the reference to the named Event Condition List object in the referenced Event Condition List
object's &ReferencingEventConditionLists field;

b) remove the reference to the referenced Event Condition List object in the named Event Condition List
object's &EventConditionLists field.

A Result(+) response shall be issued, indicating that the Event Condition List object was modified and references
updated.

22.6 GetEventConditionListAttributes service

The GetEventConditionListAttributes service is used by an MMS client to request the MMS server to return the
attribute values of a specified Event Condition List object.

22.6.1 Structure

The structure of the component service primitives is shown in Table 124.

 Parameter Name Req Ind Rsp Cnf CBB

Argument
 Event Condition List Name

 Result(+)
 List of Event Condition Names
 List of Event Condition List Names

 Result(-)
 Error type

M
M

M(=)
M(=)

S
M
C

S
M

S(=)
M(=)
C(=)

S(=)
M(=)

recl

Table 124 - GetEventConditionListAttributes service

22.6.1.1 Argument

This parameter shall convey the parameters of the GetEventConditionListAttributes service request.

22.6.1.1.1 Event Condition List Name

This parameter, of type Object Name, shall specify the &name field of the Event Condition List object whose
attribute values are to be returned.

22.6.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

22.6.1.2.1 List of Event Condition Names

This parameter shall contain a list of names of Event Condition objects in the &EventConditions field of the
specified Event Condition List object. If there are no Event Condition names in this field, this parameter shall be
an empty list.

22.6.1.2.2 List of Event Condition List Names

This parameter shall contain a list of names of Event Condition List objects in the &EventConditionLists field of
the specified Event Condition List object. This parameter shall not be present if the recl CBB has not been

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved322

negotiated. If recl has been negotiated but there are no Event Condition List names in this field, this parameter
shall be an empty list.

22.6.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

22.6.2 Service procedure

22.6.2.1 Preconditions

If the Event Condition List object specified by the Event Condition List Name parameter does not exist, the
Result(-) response shall be issued with Error Class ACCESS and Error Code OBJECT-NON-EXISTENT.

22.6.2.2 Actions

The MMS server shall return the Result(+) response with the values of the &EventConditions field and the
&EventConditionLists field as the values of the List of Event Condition Names parameter and List of Event
Condition List Names parameter respectively.

22.7 ReportEventConditionListStatus service

The ReportEventConditionListStatus service is used by an MMS client to request the MMS server to report the
status of a Event Condition List object.

22.7.1 Structure:

The structure of the component service primitives is shown in Table 125.

 Parameter Name Req Ind Rsp Cnf CBB

 Argument
 Event Condition List Name
 Continue After

 Result(+)
 List of Event Condition Status
 Current State
 Number of Event Enrollments
 Enabled
 Time of Last Transition To Active
 Time of Last Transition To Idle
 More Follows

 Result(-)
 Error Type

M
M
U

M(=)
M(=)
U(=)

S
M
M
M
C
C
C
C

S
M

S(=)
M(=)
M(=)
M(=)
C(=)
C(=)
C(=)
C(=)

S(=)
M(=)

Table 125 - ReportEventConditionListStatus service

22.7.1.1 Argument

This parameter shall convey the parameter of the ReportEventConditionListStatus service request.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 323

22.7.1.1.1 Event Condition List Name

This parameter, of type Object Name. shall contain the &name field of the Event Condition List for which the
status report is requested.

22.7.1.1.2 Continue After

This parameter, of type Object Name, indicates that the MMS client requests the List of Event Condition Status
returned by the MMS server to begin with an Event Condition object other than the first object in the list.

22.7.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

22.7.1.2.1 List of Event Condition Status

This parameter shall contain zero of more entries describing the status of Event Condition objects either referenced
directly in the &EventConditions field of the Event Condition List object or indirectly through the
&EventConditionLists field of the Event Condition List object.

22.7.1.2.1.1 Current State

This parameter, of type EC-State, shall contain the value of the Event Condition object's &ecState field.

22.7.1.2.1.2 Number of Event Enrollments

This parameter, of type integer, shall contain the number of objects in the Event Condition object's
&EventEnrollments field.

22.7.1.2.1.3 Enabled

This parameter, of type boolean, shall contain the value of the &enabled field of the Event Condition object, for a
monitored Event Condition object. If the &ecClass field of the Event Condition object contains the value
network-triggered, this parameter shall be omitted.

22.7.1.2.1.4 Time Of Last Transition To Active

If the Event Condition object is monitored and the value of the &TimeToActive field is not equal to
undefined, this parameter shall contain the value of the &TimeToActive field. Otherwise, this parameter shall
be omitted.

22.7.1.2.1.5 Time Of Last Transition To Idle

If the Event Condition object is monitored and the value of the &TimeToIdle field is not equal to undefined,
this parameter shall contain the value of the &TimeToIdle field. Otherwise, this parameter shall be omitted.

22.7.1.2.2 More Follows

This parameter, of type boolean, shall indicate whether additional ReportEventConditionListStatus requests are
necessary to retrieve more of the requested information. If true, more requests are necessary (if the MMS client
wishes to retrieve more data). If false, either the List of Event Condition Status contains the status of the last
Event Condition in the list, or the List of Event Condition Status parameter is empty. The More Follows
parameter shall be false if the List of Event Condition Status parameter is empty.

22.7.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved324

22.7.2 Service Procedure

22.7.2.1 Preconditions

If the Event Condition List object specified by the Event Condition List Name parameter does not exist, the
Result(-) response shall be issued with Error Class ACCESS and Error Code OBJECT-NON-EXISTENT.

22.7.2.2 Actions

The MMS server shall construct a list of Event Condition objects, either directly referenced by the
&EventConditions field of the named Event Condition List object, or (if recl has been negotiated) indirectly
referenced through the &EventConditionLists field of the named Event Condition List object. Clause 5.4.2
prescribes the ordering of this list. The MMS server shall return the status information for as many of these Event
Condition objects as it can accommodate in a single response, beginning either at the beginning of the list if the
Continue After parameter has not been specified, or beginning immediately following the Event Condition object
specified by the Continue After parameter.

A Result(+) shall be returned.

22.8 AlterEventConditionListMonitoring service

The AlterEventConditionListMonitoring service is used by an MMS client to request the MMS server to alter the
value of attributes of Event Condition objects referenced by a Event Condition List object.

22.8.1 Structure

The structure of the component service primitives is shown in Table 126.

 Parameter Name Req Ind Rsp Cnf CBB

 Argument
 Event Condition List Name
 Enabled
 Priority change
 Priority value
 Priority reset

 Result(+)

 Result(-)
 Error type

M
M
U
U
S
S

M(=)
M(=)
U(=)
U(=)
S(=)
S(=)

S

S
M

S(=)

S(=)
M(=)

Table 126 - AlterEventConditionListMonitoring service

22.8.1.1 Argument

This parameter shall convey the parameters of the AlterEventConditionListMonitoring service request.

22.8.1.1.1 Event Condition List name

This parameter, of type Object Name, shall identify the Event Condition List object whose referenced Event
Condition objects are to be altered.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 325

22.8.1.1.2 Enabled

This optional parameter, of type boolean, shall be the replacement value for the contents of the &enabled field of
all Event Condition objects directly or indirectly referenced by the Event Condition List object. Either this
parameter, or the Priority change parameter, or both, shall be provided.

22.8.1.1.3 Priority change

This optional parameter shall alter the &groupPriorityOverride field of the referenced Event Condition objects.
Either this parameter, or the Enabled parameter, or both shall be provided. If this parameter is provided, one of the
following parameters shall be selected.

22.8.1.1.3.1 Priority value

This parameter, of type integer, shall be the replacement value for the value of the &groupPriorityOverride field of
all referenced Event Condition objects.

22.8.1.1.3.2 Priority reset

This parameter, of type null, shall indicate that the value of the &groupPriorityOverride field is to be set to
undefined.

22.8.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

22.8.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

22.8.2 Service procedure

22.8.2.1 Preconditions

The MMS server shall verify:

a) that all the conditions in the Access Control List referenced by the &accessControl field of the VMD are
satisfied for the service class LOAD (see 9.1.3);

b) that the Event Condition List object identified by the Event Condition List Name parameter exists;

c) that all the conditions in the Access Control List referenced by the &accessControl field of the Event
Condition List object are satisfied for the service class LOAD (see 9.1.3);

If the Event Condition List object specified by the Event Condition List Name parameter does not exist, a Result(-)
response shall be issued with Error Class ACCESS and Error Code OBJECT-NON-EXISTENT.

Otherwise, if any other of these conditions is not satisfied, a Result(-) shall be returned.

22.8.2.2 Actions

For every Event Condition object referenced by the &EventConditions field of the specified Event Condition List
object, and for every Event Condition object indirectly referenced through the &EventConditionLists field, the
MMS server shall:

a) If the Enabled parameter has been provided, the value of the &enabled field shall be set to the value of the
Enabled parameter.

b) If the Priority change parameter has been provided,

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved326

1) If the Priority value parameter has been selected, change the value of the &groupPriorityOverride
field to the value in the Priority value parameter.

2) If the Priority reset parameter has been selected, change the value of the &groupPriorityOverride
field to undefined.

A Result(+) response shall be returned.

23 Journal Management services

This clause provides object models for the following objects:

JOURNAL
JOURNAL-ENTRY

This clause specifies the following services:

ReadJournal
WriteJournal
InitializeJournal

ReportJournalStatus
CreateJournal
DeleteJournal

The purpose of the Journal Management Services is to provide a facility for the recording and retrieval of
chronologically ordered information concerning events, variable contents of interest in conjunction with events, or
both, and text strings that may be used to provide, for example, annotating explanations or operator observations.

23.1 The Journal Management Model

This clause defines the Journal object and the Journal Entry object, and provides services that operate on these
objects. Journal objects may be predefined or may be created through the use of the CreateJournal service.

23.1.1 The Journal object

NOTE The MMS Journal object is considered to be capable of storing an indefinite number of Journal Entries. Although
real journals deal with considerations such as storage media changeover and contents archival, these issues are local
matters.

This clause introduces the model of the Journal object.

 JOURNAL ::= CLASS {
&name ObjectName,

 -- shall be unique within its range of specification (VMD, Domain, AA)
&accessControl Identifier,
&Entries JOURNAL-ENTRY OPTIONAL }

23.1.1.1 &name

The &name field uniquely identifies a Journal object within the VMD A Journal name may have VMD,
Domain-specific or AA-specific scope.

23.1.1.2 &accessControl

The &accessControl field specifies an Access Control List object that provides conditions under which this
Journal may be read, written, deleted, or have its access control changed.

23.1.1.3 &Entries

The &Entries field specifies a set of zero or more Journal Entry objects. Such Journal Entry objects contain the
information that makes up the Journal.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 327

23.1.2 The Journal Entry object

This clause introduces the model of the Journal Entry object.

 JOURNAL-ENTRY ::= CLASS {
&journal ObjectName,
&entry OCTET STRING,
&clientApplication ApplicationReference,
&timeStamp TimeOfDay,
&orderOfReceipt INTEGER UNIQUE,
&informationType ENUMERATED {

annotation,
event-data,
data },

 -- The following attribute shall appear if and only if the
 -- value of &informationType is annotation.

&textComment MMS255String OPTIONAL,
 --The following attribute shall appear if and only if the
 -- value of &informationType is event-data.

&eventTransitionRecord SEQUENCE {
name [0] ObjectName,
currentState [1] IMPLICIT EC-State
} OPTIONAL,

 -- The following attribute shall appear if and only if the
 -- value of &informationType is data or event-data.

&journalVariables SEQUENCE OF Journal-Variable OPTIONAL }

23.1.2.1 &journal

The &journal field identifies the Journal object with which the Journal Entry object is associated.

23.1.2.2 &entry

The &entry field identifies the Journal Entry within a specified Journal. The value of this field shall be assigned
by the MMS server such that no two Journal Entry objects whose &journal field reference the same Journal object
have the same value for this field. Once assigned, this attribute shall not be changed. The primary use of this
value is to resolve the identity of a particular Journal Entry object during access where multiple Journal Entry
objects have an identical value of the &timeStamp field.

23.1.2.3 &clientApplication

The &clientApplication field identifies the Application Process that caused the server to create the Journal Entry
object.

23.1.2.4 &timeStamp

The &timeStamp field specifies the time of day that this Journal Entry was created.

NOTE This attribute is intended to be used by a client to record the time of occurrence associated with the &textComment,
&EventTransitionRecords or &JournalVariables fields for the Journal Entry object.

23.1.2.5 &orderOfReceipt

The &orderOfReceipt field represents the order of creation of the Journal Entry object among all other Journal
Entry objects with the same &timeStamp field value for this Journal.

The intent of this field is to provide an ordering among Journal Entry objects within a journal that have the same
time stamp. The server shall assign the value of the &orderOfReceipt field so as to be monotonically increasing
by order of receipt of the information in the entry for those entries with the same &timeStamp field and &journal
field.

23.1.2.6 &informationType

The &informationType field indicates the type of information contained in the Journal Entry object. If the value
of this attribute is annotation, the information in the Journal Entry object represents a text comment (that may
be used to document or comment on some condition or set of conditions). If the value of this attribute is
event-data, the information in the Journal Entry object represents a record of the occurrence of an event and

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved328

zero or more variable values. If the value of this attribute is data, the information in the Journal Entry object
represents zero or more variable values.

23.1.2.7 &textComment

The &textComment field, which shall exist only if the &informationType field value is annotation, contains a
text comment. This field shall be a character string whose length is between zero and two hundred fifty five (255)
characters, inclusive.

NOTE This attribute is intended to be used by a client to document or comment on some condition or set of conditions.

23.1.2.8 &eventTransitonRecord

The &eventTransitionRecord field, which shall exist only if the &informationType field value is event-data,
contains an Event Transition Record.

NOTE This attribute is intended to be used by a client to record the occurrence of an event by specification of the Event
Condition Name and the resulting State attribute of this Event Condition.

23.1.2.9 &journalVariables

The &journalVariables field, which shall exist only if the &informationType field value is event-data or
data, shall contain zero or more Journal Variables. Each Journal Variable shall contain a variable tag (a
character string whose length shall be not more than 32 characters) and a data value.

NOTE If the &informationType field value is event-data, this attribute is intended to be used by a client to record the
values of zero or more variables at the time of the occurrence of the event specified in the Event Transition Record.

The Journal-Variable type is defined as follows:

 Journal-Variable ::= SEQUENCE {
variableTag MMS255String,
valueSpecification Data }

23.2 ReadJournal service

The Read Journal service may be used by an MMS client to request an MMS server to retrieve the values of fields
of Journal Entry objects of a specified Journal object.

The MMS client may specify filters in the ReadJournal request in order to return information only from Journal
Entry objects that meet the criteria specified by those filters.

23.2.1 Structure

The structure of the component service primitives is shown in Table 127.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 329

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Journal Name
 Range Start Specification
 Starting Time
 Starting Entry
 Range Stop Specification
 Ending Time
 Number of Entries
 List of Variables
 Entry to Start After
 Time Specification
 Entry Specification

Result(+)
 List Of Journal Entry
 Entry Identifier
 Originating Application
 Occurrence Time
 Entry Form
 Data
 Event
 Event Condition Name
 Current State
 List of Variables
 Variable Tag
 Value Specification
 Annotation
 More Follows

Result(-)
 Error Type

M
M
U
S
S
U
S
S
U
U
M
M

M(=)
M(=)
U(=)
S(=)
S(=)
U(=)
S(=)
S(=)
U(=)
U(=)
M(=)
U(=)

S
M
M
M
M
M
S
C
M
M
C
M
M
S
M

S
M

S(=)
M(=)
M(=)
M(=)
M(=)
M(=)
S(=)
C(=)
M(=)
M(=)
C(=)
M(=)
M(=)
S(=)
M(=)

Table 127 - ReadJournal service

23.2.1.1 Argument

This parameter shall convey the parameters of the ReadJournal service request.

23.2.1.1.1 Journal Name

This parameter, of type Object Name, shall specify the name of the Journal object whose Journal Entry objects are
the source of the information to be returned.

23.2.1.1.2 Range Start Specification

The Range Start Specification parameter shall specify the start time of the range filter. If this parameter is not
present, the range shall begin at the start of the journal. If this parameter is present, one of the following
parameters shall appear.

23.2.1.1.2.1 Starting Time

This parameter, of type TimeOfDay, shall specify the time parameter to be compared to the &timeStamp field of
the Journal Entry as the start of the range.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved330

23.2.1.1.2.2 Starting Entry

This parameter, of type octet string, shall specify Range Start Specification as an Entry Identifier attribute value.

23.2.1.1.3 Range Stop Specification

The Range Stop Specification parameter shall specify the end of the range to be included. If this parameter is not
present, the range shall end at the end of the journal. If this parameter is present, one of the following parameters
shall appear.

23.2.1.1.3.1 Ending Time

This parameter, of type TimeOfDay, shall specify the time parameter to be compared to the &timeStamp field of
the Journal Entry as the end of the range.

23.2.1.1.3.2 Number Of Entries

This parameter, of type integer, shall provide the maximum number of entries to search. The sign of this
parameter shall be used to determine the direction of ordering when qualified entries are returned to the MMS
client.

23.2.1.1.4 List Of Variables

This optional parameter shall specify a filter for inclusion of only qualified Journal Entry objects by specifying the
tag names of one or more Journal Variables.

NOTE Tag names associated with Journal Variables are provided by the MMS client when Journal Entry objects are created.
These names may or may not be the same as the Variable Name attributes associated with Named Variable objects at
the MMS client. Tag names may be used for placing the values of Unnamed Variable objects into a Journal Entry
object.

23.2.1.1.5 Entry to Start After

This parameter shall be used to request the MMS server to begin returning information from a Journal Entry object
in the list of Journal Entry objects that meet all other specified criteria that is not at the beginning of the list.

If this parameter is present, the following parameters shall appear.

23.2.1.1.5.1 Time Specification

This parameter shall specify the time desired as the starting point, through comparison with the &timeStamp field
of Journal Entry objects, for transmission of qualified entries from a larger list.

23.2.1.1.5.2 Entry Specification

This parameter shall specify the &entry field of the Journal Entry object in the Qualified List of entries that match
all other specified criteria for this service instance from which the actual return of entries should start after.

If the MMS client specifies a value for this parameter that does not match the Entry Identifier of any Journal Entry
in the qualified list, all entries beginning at the specified Time Specification shall be returned (including any
Journal Entries with identical time stamps).

23.2.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

23.2.1.2.1 List Of Journal Entry

The List Of Journal Entry parameter shall contain information from each of the Journal Entries to be returned to
the MMS client. Each Journal Entry is described by the parameters below.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 331

23.2.1.2.2 Entry Identifier

This parameter, of type octet string, shall be the value of the &entry field of the Journal Entry object.

23.2.1.2.3 Originating Application

This parameter, of type Application Reference, shall be the value of the &clientApplication field of the Journal
Entry object.

23.2.1.2.4 Occurrence Time

This parameter, of type TimeOfDay, shall be the value of the &timeStamp field of the Journal Entry object.

23.2.1.2.5 Entry Form

This parameter shall be the value of the &informationType field of the Journal Entry object. Depending on its
value, one of the following parameters shall be present.

23.2.1.2.6 Data

The Data parameter provides the data for Journal Entry objects that are of type data or entry-data selected
by the MMS server to meet the criteria of the service request. This parameter shall only be present if the value of
the &informationType field is entry-data or data.

23.2.1.2.6.1 Event

The Event parameter shall appear if the &informationType field is entry-data. If this parameter is present, the
following parameters shall appear.

23.2.1.2.6.1.1 Event Condition Name

The Event Condition Name parameter, of type Object Name, shall specify the name of the Event Condition whose
transition caused a entry in the Journal object.

23.2.1.2.6.1.2 Current State

The Current State parameter shall be the value of the &ecState field of the Event Condition object following event
transition processing.

23.2.1.2.6.2 List Of Variables

The List Of Variables parameter shall be returned by the MMS server to convey the names and values of Journal
Variable objects recorded in the entry.

23.2.1.2.6.2.1 Variable Tag

This parameter, of type character string, shall be the value of the variableTag field of the &journalVariable
field.

23.2.1.2.6.2.2 Value Specification

This parameter shall contain the value of the valueSpecification field of the &journalVariable field. A
description of the Data parameter is provided in 14.4.

23.2.1.2.7 Annotation

This parameter, of type character string, shall be the value of the &textComment field of the Journal Entry object.
The intent of this field is to provide amplifying details or operator observations. This parameter shall only be
present if the value of the &informationType field is annotation.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved332

23.2.1.2.8 More Follows

This parameter, of type boolean, shall indicate whether or not additional requests are necessary to obtain all of the
Journal Entries that meet the specified criteria. If true, more requests are necessary (if the requesting MMS-user
desires to retrieve more data). If false, the List Of Journal Entry contains the last Journal Entry that qualified or is
empty.

23.2.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

23.2.2 Service Procedure

23.2.2.1 Preconditions

The MMS Server shall verify:

a) that the Journal object identified by the Journal Name parameter exists;

b) that all the conditions in the Access Control List object referenced by the &accessControl field of the
VMD are satisfied for the service class = STORE;

c) that all the conditions in the Access Control List object reference by the &accessControl field of this
Journal object are satisfied for the service class = STORE.

If these conditions are not satisfied, the service request fails and a Result(-) shall be returned.

23.2.2.2 Prologue

The ReadJournal service is used to search a particular journal for all journal entries that meet a specified series of
"filter" criteria. The filter criteria that may be specified are:

a) A range start point and range end point. The effect is to select only those journal entries that fall within
that range. The range start specified may begin at the start of the journal (if no start point is specified), at a
particular entry (if a Starting Entry is specified), or at a particular time (if a Starting Time is specified).
The range start point is inclusive of the starting point selected.

The range end specified may be at the end of the journal (if no end point is specified), at a particular entry
in relation to the start point (if a Number of Entries is specified), or at a particular time (if an Ending Time
is specified). The range end point is inclusive of the ending point selected.

b) A List of Variables. The effect is to select only those journal entries that contain at least one journal
variable whose journal variable tag matches that specified. Only specified variables are returned from
selected entries.

c) An Entry To Start After. This parameter may be used to reduce the list of journal entries that have met all
of the criteria above. (It is primarily of use when the server chooses, for local reasons, to return the list of
selected journal entries in parts, so that the client may request additional parts of this list.) The Entry To
Start After may be specified by time and by identifying a specific journal entry, such that all entries up to
that specified are not returned.

23.2.2.3 Actions Step 1

The MMS server shall compose a "Qualifying List" by (logically) sorting all Journal Entry objects referenced by
that Journal object into a chronological list. Chronological order shall be based on the Journal Entry object's
&timeStamp field (such that the earliest time stamp is first in the list), and then on the &orderOfReceipt field for
those objects whose &timeStamp field values are equal (such that lower values precede higher values).

NOTE The mechanisms described in this clause describe the logical operation required for the ReadJournal service.
Implementations may choose other methods of internal operation, as long as the externally visible characteristics
described in this clause are maintained.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 333

The Journal Entry objects in the Qualifying List are referred to as "Entries", where each such entry is numbered
sequentially from one to n (Entry one being the first in the list, and Entry n being the last). The number associated
with any Journal Entry object in the Qualifying List is called its "Entry Number".

The Start Entry Number represents the logically first entry in the Journal that could be returned, as determined by
the Range Start Specification. It is important to note that this entry may not be returned if the range of entries to
be returned is found to be empty (this occurs when this entry is beyond the Range Stop Specification).

23.2.2.3.1 Determination of the Start Entry Number

The Start Entry Number shall then be determined as follows:

a) If the Range Start Specification parameter is not present in the ReadJournal service indication primitive,
the Start Entry Number shall be one.

NOTE 1 In this case, the range begins at the logically first Entry (as determined by Time Stamp and then Order of Receipt) in
the Journal.

b) If the Range Start Specification parameter is present and specifies a Starting Time, one of the following
two actions shall be taken:

1) if the Ending Time parameter is present and is greater than or equal to the Starting Time parameter,
or the Number of Entries parameter is present and is non-negative, or the Range Stop Specification
parameter is not present, the Start Entry Number shall be the Entry Number of the first element in
the Qualifying List whose &timeStamp field is equal to or greater than the value of the Starting
Time parameter. If no such element exists, all Entries shall be removed from the Qualifying List
and the MMS server shall take the action described below for the empty Qualifying List and shall
consider the ReadJournal service procedure completed.

NOTE 2 If the end of the range is beyond the start of the range, the list is searched and returned in chronological order. The
Start Entry Number represents the first entry at or beyond that requested. If the starting time requested is later than
the latest Journal entry, an empty list is returned.

2) if the Ending Time parameter is present and is less than the Starting Time parameter, or the Number
of Entries parameter is present and is negative, the Start Entry Number shall be the Entry Number
of the last element in the Qualifying List whose &timeStamp field is equal to or less than the value
of the Starting Time parameter. If no such element exists, all Entries shall be removed from the
Qualifying List and the server shall take the action described below for the empty Qualifying List
and shall consider the ReadJournal service procedure completed.

NOTE 3 If the end of the range is before the start of the range, the list is searched and returned in reverse chronological order.
The Start Entry Number represents the first entry that is not beyond that requested. If there are no Journal entries that
have a starting time earlier than or the same as the starting time requested, the empty list is returned.

c) If the Range Start Specification parameter is present and specifies a Starting Entry, the Start Entry Number
shall be the Entry Number of the Entry in the Qualifying List whose Entry Identifier attribute matches the
value of the Starting Entry parameter. If no such Entry exists, the server shall return a Result(-) response
for this service request and shall skip the remainder of this procedure.

NOTE 4 The start of the range in this case will be the specific entry requested.

23.2.2.3.2 Determination of the Stop Entry Number

The Stop Entry Number shall be determined as follows:

a) If the Range Stop Specification parameter is not present in the ReadJournal service indication primitive,
the Stop Entry Number shall be the Entry Number of the last Entry in the Qualifying List.

NOTE 1 If no end range is specified, the end will be the end of the Journal.

b) If the Range Stop Specification parameter is present and specifies an Ending Time, one of the following
two actions shall be taken:

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved334

1) if the Ending Time is greater than or equal to the &timeStamp field of the Entry whose Entry
Number is the Start Entry Number, the server shall take one of the following two actions:

i) if a Starting Time is specified and the Starting Time is greater than the Ending Time, the
server shall remove all Entries from the Qualifying List, shall take the action described for
the empty Qualifying List, and shall consider the ReadJournal service procedure complete.

ii) otherwise, the Stop Entry Number shall be the Entry Number of the last Entry in the
Qualifying List whose &timeStamp field is equal to or less than the value of the Ending
Time parameter.

NOTE 2 If the end time is beyond the &timeStamp of the entry at the start of the range, the search and return order will be
forward up to and including the end time specified. In the case that the start time requested is before the end
(forward order) but the first entry after the start has a &timeStamp after the end (hence, there are no Entries with a
&timeStamp between the start and end specified), the list to be returned is empty.

Note that the "Starting Time" may not be the same as the &timeStamp field of the Entry whose Entry Number is the
Start Entry Number (when no Journal Entry's Time Stamp matches that specified, and all Entries are logically later
than the Starting Time and logically earlier than the Ending Time). Hence, there may be no Entries between the
Starting Time and the Ending Time.

2) if the Ending Time is less than the &timeStamp field of the Entry whose Entry Number is the Start
Entry Number, the server shall take one of the following two actions:

i) if a Starting Time is specified and the Starting Time is less than or equal to the Ending
Time, the server shall remove all Entries from the Qualifying List, shall take the action
described for the empty Qualifying List, and shall consider the ReadJournal service
procedure complete.

ii) otherwise, the Stop Entry Number shall be the Entry Number of the first Entry in the
Qualifying List whose &timeStamp field is equal to or greater than the value of the Ending
Time parameter.

NOTE 3 If the end time is before the &timeStamp field of the entry at the start of the range, the search and return order will be
reverse back to and including the end time specified. In the case that the start time requested is after the end (reverse
order) but the first entry before the start has a time stamp before the end (hence, there are no Entries with a Time
Stamp between the start and end specified), the list to return is empty.

Note that the "Starting Time" may not be the same as the &timeStamp field of the Entry whose Entry Number is the
Start Entry Number (when no Journal Entry's &timeStamp field matches that specified and all Entries are logically
earlier than the Ending Time and the Starting Time). Hence, there may be no Entries between the Starting Time and
the Ending Time.

c) If the Range Stop Specification parameter is present and specifies a Number of Entries, the Stop Entry
Number shall be the arithmetic sum of the (signed integer) Number of Entries and the Start Entry Number.
If the Stop Entry Number so determined is less than one, it shall be set to one. If the Stop Entry Number so
determined is greater than the Entry Number of the last Entry in the Qualifying List, the Stop Entry
Number shall be set to the Entry Number of the last Entry.

NOTE 4 If the number of entries to return is positive, return the next n entries in the forward direction. If the number is
negative, return that number in reverse order that occur before the start of the range marker.

23.2.3 Actions Step 2

The MMS server shall remove from the Qualifying List all Entries whose Entry Number does not fall within the
inclusive range specified by the Start Entry Number and the Stop Entry Number.

If the Start Entry Number is greater than the Stop Entry Number, the Qualifying List shall be inverted by the MMS
server such that the first Entry becomes the last Entry and the last Entry becomes the first Entry (and each
intermediate Entry is likewise inverted in the list).

23.2.4 Actions Step 3

If the List of Variables parameter is present, the server shall remove from the Qualifying List all Entries that do
not contain a &JournalVariables field that includes at least one Journal Variable whose variableTag field

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 335

matches an element specified in the List of Variables parameter. Matching on the variableTag field shall be
case sensitive, and shall be sensitive to trailing blanks.

23.2.5 Actions Step 4

If the Entry to Start After and the Entry Specification parameters are present, all (if any) Entries that precede the
Entry in the Qualifying List whose &entry field matches the Entry Specification parameter shall be removed by
the server from the Qualifying List. If no entry in the Qualifying List has an &entry field that matches the Entry to
Start After parameter, no action shall be taken as a result of the specification of the Entry Specification parameter.

If the Entry to Start After and the Time Specification parameters are present and if the Qualifying List is sorted by
chronological order, all (if any) Entries whose &timeStamp field is less than or equal to the value of the Time
Specification parameter shall be removed by the server from the Qualifying List.

If the Entry to Start After and the Time Specification parameters are present and if the Qualifying List is sorted by
reverse chronological order, all (if any) Entries whose &timeStamp field is greater than or equal to the value of the
Time Specification parameter shall be removed by the server from the Qualifying List.

This completes the formation of the Qualifying List of Entries.

23.2.6 Actions Step 5

The MMS server shall take one of the following two actions:

a) If the Qualifying List is empty (contains zero Entries), the server shall return a Result(+) response in which
the List Of Journal Entries contains zero elements and More Follows is false.

b) Otherwise, the server shall compose a Result(+) response as follows:

1) The More Follows parameter shall be set to false if all Entries in the Qualifying List are included in
the List Of Journal Entries parameter, and shall be set to true otherwise.

2) The List Of Journal Entries parameter shall contain at least one and not more than m elements,
where each element represents a Journal Entry object from the Qualifying List and m is the number
of Entries in the Qualifying List. (The specific number returned shall be determined as a local
matter.)

3) For each element in the List of Journal Entries parameter, the values returned shall be determined

from the fields of the corresponding Journal Entry object in the Qualifying List as follows:

i) The Entry Identifier parameter shall contain the value of the &entry field;

ii) The Originating Application parameter shall contain the value of the &clientApplication
field;

iii) The Occurrence Time parameter shall contain the value of the &timeStamp field;

iv) The Entry Form parameter shall contain the value ANNOTATION if the &informationType
field value is annotation, and shall contain the value data otherwise;

v) The Data parameter shall be present if and only if the &informationType field is event-
data or data.

vi) The Event parameter shall be present if and only if the &informationType field is event-
data.

vii) If the Event parameter is present, the Event Condition Name parameter shall be the value of
the name field of the &eventTransitionRecord field.

viii) If the Event parameter is present, the Current State parameter shall be the currentState
field of the &eventTransitionRecord field.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved336

ix) If the List Of Variables parameter was not present in the request service primitive, the List
Of Variables parameter (and the subparameters Variable Tag and Value Specification of
each of its elements) shall contain the values of the &variableTag field and
&valueSpecification field of all the Journal Variable objects on the &journalVariables field
of the Journal Entry object.

x) If the List Of Variables parameter was present in the request service primitive, the List Of
Variables parameter (and the subparameters Variable Tag and Value Specification of each
of its elements) shall contain only the values of the variableTag field and
valueSpecification field of the &journalVariable field whose variableTag field
matches a Variable Tag parameter in the request primitive. No other &journalVariable
fields shall be returned.

xi) The Annotation parameter shall be present only if the &informationType field is
annotation. The Annotation parameter shall contain the value of the &textComment
field.

23.3 WriteJournal service

The WriteJournal service may be used by an MMS client to request the MMS server to place one or more Journal
Entry objects into a Journal object.

23.3.1 Structure

The structure of the component service primitives of the WriteJournal service is shown in Table 128.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Journal Name
 List Of Journal Entry
 Occurrence Time
 Entry Form
 Data
 Event
 Event Condition Name
 Current State
 List of Variables
 Variable Tag
 Value Specification
 Annotation

Result(+)

Result(-)
 Error Type

M
M
M
M
M
S
U
M
M
U
M
M
S

M(=)
M(=)
M(=)
M(=)
M(=)
S(=)
U(=)
M(=)
M(=)
U(=)
M(=)
M(=)
S(=)

S

S
M

S(=)

S(=)
M(=)

Table 128 - WriteJournal service

23.3.1.1 Argument

This parameter shall convey the parameters of the WriteJournal service request.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 337

23.3.1.1.1 Journal Name

This parameter, of type Object Name, shall specify the name of the Journal object to which the Journal Entry
object(s) shall be added.

23.3.1.1.2 List Of Journal Entry

This parameter shall specify one or more Journal Entry objects to be added to the specified Journal object. The
attributes of each Journal Entry object created shall be initialized in accordance with the following parameters:

23.3.1.1.2.1 Occurrence Time

The Occurrence Time parameter shall specify the time to be associated with the Journal Entry object.

23.3.1.1.2.2 Entry Form

This parameter shall indicate the form of the specific Journal Entry object to be created. The possible values are
DATA, which shall indicate that the Data form of entry is being supplied in the service request, or
ANNOTATION, which shall indicate that the Annotation form of entry is being supplied in the service request.
Depending on the value of this parameter, one of the following parameters shall be selected.

23.3.1.1.2.2.1 Data

The Data parameter shall be selected by the MMS client to indicate that the Journal Entry will contain an Event
Condition, Journal Variables, or both. If this parameter is selected, one or both of the following parameters shall
appear.

a) Event

The Event parameter shall be selected by the MMS client to indicate that an Event Condition is to be included in
this entry. If this parameter is selected, the following two parameters shall appear.

i) Event Condition Name

The Event Condition Name parameter, of type Object Name, shall specify the &name field of the Event Condition
object for which a state change is to be recorded.

ii) Current State

The Current State parameter, of type EC-State, shall specify the &ecState field of the Event Condition object
following event transition processing.

b) List Of Variables

The List Of Variables parameter shall be selected by the MMS client to convey one or more Journal Variables. If
this parameter is selected, the following two parameters shall appear one or more times.

i) Variable Tag

This parameter, of type character string, shall specify the variableTag field of the Journal Variable. This field
shall be assigned by the MMS client requesting the WriteJournal service.

ii) Value Specification

This parameter shall specify the value to be associated with the Journal Variable.

23.3.1.1.2.2.2 Annotation

This parameter, of type character string, shall be selected by the MMS client to supply amplifying detail or
comments for the Journal Entry object. This parameter shall only be present if the value of the Entry Form
parameter is ANNOTATION.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved338

23.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

23.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

23.3.2 Service Procedure

23.3.2.1 Preconditions

The MMS server shall verify that:

a) the Journal identified by the Journal Name parameter exists;

b) all the conditions in the Access Control List object referenced by the &accessControl field of the VMD are
satisfied for the service class = LOAD;

c) all the conditions in the Access Control List object referenced by the &accessControl field of the Journal
object are satisfied for the service class = LOAD;

d) if the Event parameter is present in the service request primitive, the Event Condition object indicated by
the Event Condition Name parameter exists, and that its &state field value is equal to the Current State
parameter.

If any of these conditions is not satisfied, the service shall fail and a Result(-) shall be returned.

23.3.2.2 Actions

The MMS server shall create a Journal Entry object and shall add this object to the &Entries field of the Journal
object named in the Journal Name parameter. The attributes of the Journal Entry object created shall be initialized
as follows:

a) The &journal field shall be set so as to reference the Journal object named by the Journal Name parameter.

b) The &entry field shall be assigned by the MMS server as a local matter, subject to the requirements of
23.1.2.2.

c) The &clientApplication field shall specify the application process of the MMS client requesting the
WriteJournal service.

d) The &timeStamp field shall be the value of the Occurrence Time parameter.

NOTE This International Standard does not require that clocks at multiple MMS clients or servers be synchronized. Further,
if multiple MMS clients are placing entries in a common Journal, the possibility exists that the entries in the Journal
may not be received in exact chronological order.

e) The &orderOfReceipt field shall be assigned by the MMS server as a local matter, subject to the
requirements of 23.1.2.5.

f) The &informationType field shall be annotation if the Entry Form parameter specifies
ANNOTATION, shall be event-data if the Entry Form parameter specifies DATA and the Event
parameter is present, and shall be data otherwise.

g) The &textComment field shall be the value of the Annotation parameter if present.

h) The &eventTransitionRecord field shall contain the values of the Event parameter, if present.

i) The &JournalVariables field shall be the value of the List of Variables parameter if present.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 339

23.4 InitializeJournal service

The InitializeJournal service may be used by an MMS client to request an MMS server to initialize all or part of an
existing Journal object by removing all or some of the Journal Entry objects in that Journal.

23.4.1 Structure

The structure of the component service primitives of the InitializeJournal service is shown in Table 129.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Journal Name
 Limiting Time
 Limiting Entry

Result(+)
 Entries Deleted

Result(-)
 Error Type

M
M
U
U

M(=)
M(=)
U(=)
U(=)

S
M

S
M

S(=)
M(=)

S(=)
M(=)

Table 129 - InitializeJournal service

23.4.1.1 Argument

This parameter shall convey the parameters of the InitializeJournal service request.

23.4.1.1.1 Journal Name

This parameter, of type Object Name, shall specify the &name field of the Journal object to be initialized.

23.4.1.1.2 Limiting Time

This optional parameter shall specify a value of the &timeStamp field beyond which the Journal object shall not be
initialized. If this parameter is omitted, all Journal Entries in the Journal shall be deleted, and their contents lost.
If this parameter is present, the following parameter may appear.

23.4.1.1.3 Limiting Entry

This parameter shall specify an &entry field value that may be used to resolve multiple entries that have the same
&timeStamp. If this parameter is not present, all Journal Entries up to and including the specified time shall be
initialized. This parameter shall not be present if the Limiting Time parameter is not present.

23.4.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall include the
following parameter.

23.4.1.2.1 Entries Deleted

This parameter, of type integer, shall indicate how many Journal Entry objects were deleted as a result of
successful execution of the service procedure.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved340

23.4.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

23.4.2 Service Procedure

23.4.2.1 Preconditions

The MMS server shall verify that:

a) the Journal object identified by the Journal Name parameter exists;

b) all the conditions in the Access Control List object referenced by the &accessControl field of the VMD are
satisfied for the service class = LOAD;

c) all the conditions in the Access Control List object referenced by the &accessControl field of the Journal
object are satisfied for the service class = LOAD.

If these conditions are not satisfied, the service shall fail and a Result(-) shall be returned.

23.4.2.2 Actions

If no Limiting Time parameter is present, all Journal Entry objects referenced by that Journal object shall be
deleted.

If the Limiting Time parameter is present,

a) and if the Limiting Entry is not present, or if its value does not match the &entry field value of some
Journal Entry object whose &timeStamp field matches the Limiting Time parameter, all Journal Entry
objects whose &timeStamp field is less than or equal to (earlier in time) the Limiting Time parameter shall
be deleted.

b) and if the Limiting Entry is present and matches the &entry field value of some Journal Entry object whose
&timeStamp field matches the Limiting Time parameter,

i) any Journal Entry objects whose &timeStamp field value is equal to the Limiting Time shall be
deleted if and only if their &orderOfReceipt field is less than or equal to that of the Journal Entry
identified by the Limiting Entry parameter, and

ii) all Journal Entry objects whose &timeStamp field is less than (earlier in time) the Limiting Time
parameter shall be deleted.

All Journal Entries not deleted shall not be modified by this operation. Any information contained in Journal
Entries that are logically deleted shall be lost.

The MMS server shall return a Result(+) indicating the number of Journal Entries that were deleted.

23.5 ReportJournalStatus service

The ReportJournalStatus Service may be used by an MMS client to request the MMS server to report the number
of Journal Entries in a Journal object.

23.5.1 Structure

The structure of the component service primitives is shown in Table 130.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 341

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Journal Name

Result(+)
 Current Entries
 MMS Deletable
 Access Control List

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M
C

S
M

S(=)
M(=)
M(=)
C(=)

S(=)
M(=)

aco

Table 130 - ReportJournalStatus service

23.5.1.1 Argument

This parameter shall convey the parameter of the ReportJournalStatus service request.

23.5.1.1.1 Journal Name

This parameter, of type Object Name, shall specify the name of the Journal object for which the status is to be
reported.

23.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

23.5.1.2.1 Current Entries

This parameter, of type integer, shall indicate how many Journal Entry objects are currently referenced by the
Journal object.

23.5.1.2.2 MMS Deletable

This parameter, of type boolean, shall indicate whether (true) or not (false) the Journal object may be deleted
through the use of the DeleteJournal service. Subclause 9.1.4 specifies the value to be returned by this parameter.

23.5.1.2.3 Access Control List

This parameter, of type Identifier, shall indicate the name of the Access Control List object that controls access to
this Journal object. This parameter shall not appear unless the aco parameter CBB has been negotiated.

23.5.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

23.5.2 Service Procedure

23.5.2.1 Preconditions

The MMS server shall verify that the Journal object identified by the Journal Name parameter exists. If this
condition is not satisfied, a Result(-) shall be returned and the remainder of this procedure shall be skipped.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved342

23.5.2.2 Actions

The MMS server shall determine the number of Journal Entry objects currently referenced by the &Entries field of
the Journal object whose &name field is specified by the Journal Name parameter and assign this value to the
Current Entries parameter. The MMS server shall determine the value of the MMS Deletable parameter. If the
aco CBB has been negotiated, the MMS server shall assign the &name field of the Access Control List object
referenced by the &accessControl field of the Journal object to the Access Control List parameter. The MMS
server shall return a Result(+) with these parameters.

23.6 CreateJournal service

The CreateJournal Service may be used by an MMS client to request the MMS server to create a Journal object.

23.6.1 Structure

The structure of the component service primitives is shown in Table 131.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Journal Name

Result(+)

Result(-)
 Error Type

M
M

M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 131 - CreateJournal service

23.6.1.1 Argument

This parameter shall convey the parameter of the CreateJournal service request.

23.6.1.1.1 Journal Name

This parameter, of type Object Name, shall specify the name of the Journal object that is to be created.

23.6.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

23.6.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

23.6.2 Service Procedure

23.6.2.1 Preconditions

The MMS server shall verify that:

a) all the conditions in the Access Control List object referenced by the &accessControl field of the VMD are
satisfied for the service class = LOAD;

b) a Journal object whose &name field is the same as the Journal Name parameter does not already exist.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 343

If any of these conditions is not satisfied, the service shall fail and a Result(-) shall be returned.

23.6.2.2 Actions

The MMS server shall create a Journal object, and shall initialize its attributes as follows:

a) The &name field shall be set to the value specified in the Journal Name parameter;

b) The &accessControl field shall be initialized to refer to an Access Control List object that will report the
value of MMS Deletable as true (see 9.1.4). The predefined symbol 'M_Deletable' (see 25.3.2.1) may be
used for this purpose.

c) The &Entries field shall be set to empty.

The MMS server shall issue a Result(+) response.

23.7 DeleteJournal service

The DeleteJournal Service may be used by an MMS client to request the MMS server to delete a Journal object.

23.7.1 Structure

The structure of the component service primitives is shown in Table 132.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Journal Name

Result(+)

Result(-)
 Error Type

M
M

M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table 132 - DeleteJournal service

23.7.1.1 Argument

This parameter shall convey the parameter of the DeleteJournal service request.

23.7.1.1.1 Journal Name

This parameter, of type Object Name, shall specify the name of the Journal object that is to be deleted.

23.7.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

23.7.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved344

23.7.2 Service Procedure

23.7.2.1 Preconditions

The MMS server shall verify that:

a) all the conditions in the Access Control List object referenced by the &accessControl field of the VMD are
satisfied for the service class = DELETE;

b) the Journal object identified by the Journal Name parameter exists;

c) all the conditions in the Access Control List object referenced by the &accessControl field of the Journal
are satisfied for the service class = DELETE.

If any of these conditions is not satisfied, a Result(-) shall be returned with an error class = ACCESS and error
code = OBJECT-ACCESS-DENIED. The remainder of this procedure shall be skipped.

23.7.2.2 Actions

The MMS server shall:

a) delete all Journal Entry objects of the &Entries field of the Journal object;

b) remove the reference to this Journal object from the &Journals field of the Access Control List object
referenced by the &accessControl field of the Journal object;

c) delete the Journal object.

The MMS server shall return a Result(+).

23.8 Conformance Requirements Unique to Journals

23.8.1 Support for Time

A client claiming conformance to the requester role for the WriteJournal service shall provide support for time, in
terms of date and time of day. A statement regarding time support shall be provided for any implementation
claiming time support as a part of the System Configuration and Initialization (see ISO 9506-2, clause 25).

24 Errors

Most of the MMS services are realized by an initiating MMS-user invoking an MMS-service and then
subsequently receiving a response giving the result of the service's execution at the responding MMS-user. There
are two forms that the response may take:

a) A normal, or successful, response that gives the outcome of successful execution of the requested service;
or

b) An abnormal, or failure, response that provides the initiating MMS-user with an explanation of why the
service could not be successfully executed.

This clause defines the semantics of the errors that may be received as a result of service invocations that cannot
be successfully executed.

24.1 Error Type

The structure of the generic Error Type is shown in Table 133.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 345

 Error Type Rsp Cnf

 Error Class
 Error Code
 Additional Code
 Additional Description
 Modifier Position

M
M
U
U
C

M(=)
M(=)
U(=)
U(=)
C(=)

Table 133 - Structure of Error Type

24.2 Description of structure of generic error type:

An Error Type is a sequence of five parameters;

a) Error Class: This parameter, of type integer, shall identify which class of error is being reported.

b) Error Code: This parameter, of type integer, shall identify the particular error within the Error Class.

c) Additional Code: This parameter, of type integer, is defined locally.

d) Additional Description: This parameter, of type character string, is defined locally. It may be used to
provide a human readable description of the error.

e) Modifier Position: This parameter, of type integer, shall identify which modifier in the List of Modifier of
the Transaction object caused the error to occur. This parameter shall be present if and only if the error
causing the error response occurred during modifier processing.

NOTE Additional, service specific error information may be provided for some MMS services. For such services, the
service specific parameters are described in the relevant service descriptions.

24.2.1 Error Class - VMD-STATE

This error class is returned whenever the state of the VMD is such that the requested service may not be executed.
The error codes in this class are:

24.2.1.1 VMD-STATE-CONFLICT

This error code is returned when a request has been made that would alter the state of the VMD in a way that
conflicts with the current state of the VMD.

24.2.1.2 VMD-OPERATIONAL-PROBLEM

This error code is returned when a request has been made that may not be honoured because of an operational
problem with the VMD.

24.2.1.3 DOMAIN-TRANSFER-PROBLEM

This error code is returned when the Load Data transmitted contains an inconsistency that prevents it from being
used.

24.2.1.4 STATE-MACHINE-ID-INVALID

This error code is returned when there is no state machine associated with the state machine ID.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved346

24.2.1.5 OTHER

This error code is returned due to a reason other than any of those identified for this error class.

24.2.2 Error Class - APPLICATION REFERENCE

This error class may be returned with respect to associations other than those established between an MMS client
and an MMS server. The error codes for this class of errors are:

24.2.2.1 APPLICATION-UNREACHABLE

This error code is returned when the referenced application is currently unreachable.

24.2.2.2 CONNECTION-LOST

This error code is returned when the connection to the specified application was lost before the service could be
completed.

24.2.2.3 APPLICATION-REFERENCE-INVALID

This error code is returned when the application reference is invalid.

24.2.2.4 CONTEXT-UNSUPPORTED

This error code is returned when the referenced application does not support the desired application context.

24.2.2.5 OTHER

This error code is returned due to a reason other than any of those identified for this error class.

24.2.3 Error Class - DEFINITION

This error class is returned when there are problems with Object definitions. The error codes in this class are:

24.2.3.1 OBJECT-UNDEFINED

This error code is returned when the object with the desired name does not exist.

24.2.3.2 INVALID-ADDRESS

This error code only has reference to unnamed variable objects, and only when the parameter CBB vadr is
selected. This error code is returned when the specified address is invalid because the specified format is incorrect
or is out of range.

24.2.3.3 TYPE-UNSUPPORTED

This error code is returned when an inappropriate or unsupported type is specified for a variable.

24.2.3.4 TYPE-INCONSISTENT

This error code is returned when a type is specified that is inconsistent with the service or referenced object.

24.2.3.5 OBJECT-EXISTS

This error code is returned when the defined object already exists.

24.2.3.6 OBJECT-ATTRIBUTE-INCONSISTENT

This error code is returned when the object is specified with inconsistent attributes.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 347

24.2.3.7 OTHER

This error code is returned due to a reason other than any of those identified for this error class.

24.2.4 Error Class - RESOURCE

This error class is returned in response to a service that requests the assignment of resources that are not available
for assignment. The error codes in this class are:

24.2.4.1 MEMORY-UNAVAILABLE

This error code is returned whenever memory resources, such as tables required for maintaining the definitions of
names, event actions, journals, files are not available.

24.2.4.2 PROCESSOR-RESOURCE-UNAVAILABLE

This error code is returned whenever CPU resources to support maintenance of states are not available.

24.2.4.3 MASS-STORAGE-UNAVAILABLE

This error code is returned when storage for additional file data is lost.

24.2.4.4 CAPABILITY-UNAVAILABLE

This error code is returned when one or more capabilities is insufficient.

24.2.4.5 CAPABILITY-UNKNOWN

This error code is returned when one or more capabilities are unknown.

24.2.4.6 OTHER

This error code is returned due to a reason other than any of those identified for this error class.

24.2.5 Error Class - SERVICE

This error class is returned whenever there are problems with the service primitives. The error codes in this class
are:

24.2.5.1 PRIMITIVES-OUT-OF-SEQUENCE

This error code is returned whenever the sequence of service primitives are invalid.

24.2.5.2 OBJECT-STATE-CONFLICT

This error code is returned when the current state of the object does not permit a response for the particular service
request.

24.2.5.3 CONTINUATION-INVALID

This error code is returned when the file name to continue after could not possibly be a member of the group of
files specified by the file specification.

24.2.5.4 OBJECT-CONSTRAINT-CONFLICT

This error code is returned when current constraints on an object prevent execution of the requested service.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved348

24.2.5.5 OTHER

This error code is returned due to a reason other than any of those identified for this error class.

24.2.6 Error Class - SERVICE-PREEMPT

This error class is returned whenever a service is preempted due to a cancel request or due to some local reasons.
The error codes in this class are:

24.2.6.1 TIMEOUT

This error code is returned when a service is cancelled due to a user defined time out.

24.2.6.2 DEADLOCK

This error code is returned when a service is cancelled by the VMD in order to prevent a deadlock.

24.2.6.3 CANCEL

This error code is returned whenever a service is cancelled.

24.2.6.4 OTHER

This error code is returned due to a reason other than any of those identified for this error class.

24.2.7 Error Class - TIME-RESOLUTION;

This error class is returned in response to a service that requests a time resolution that is not supportable by the
responding MMS-user. The error codes in this class are:

24.2.7.1 UNSUPPORTABLE-TIME RESOLUTION

This error code is returned for a request for an unsupportable time resolution.

24.2.7.2 OTHER

This error code is returned due to a reason other than any of those identified for this error class.

24.2.8 Error Class - ACCESS

This error class is returned whenever the requested service to an object was incorrectly specified. The error codes
in this class are:

24.2.8.1 OBJECT-ACCESS-UNSUPPORTED

This error code is returned when the object is not defined to allow requested access.

24.2.8.2 OBJECT-NON-EXISTENT

This error code is returned when the object is non-existent.

24.2.8.3 OBJECT-ACCESS-DENIED

This error code is returned when the MMS client has insufficient privilege to request this operation.

24.2.8.4 OBJECT-INVALIDATED

This error code is returned when an attempted access references a defined object that has an undefined reference
attribute. This represents a permanent error for access attempts to that object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 349

24.2.8.5 OTHER

This error code is returned due to a reason other than any of those identified for this error class.

24.2.9 Error Class - INITIATE

This error class is returned when problems are encountered with the initiate service. The error codes in this class
are:

24.2.9.1 MAX-SERVICES-OUTSTANDING-CALLING-INSUFFICIENT

This error code is returned when the Proposed Max Services Outstanding Calling parameter is too small for the
desired communication.

24.2.9.2 MAX-SERVICES-OUTSTANDING-CALLED-INSUFFICIENT

This error code is returned when the Proposed Max Services Outstanding Called parameter is too small for the
desired communication.

24.2.9.3 PARAMETER-CBB-INSUFFICIENT

This error code is returned when a parameter CBB that is necessary for communication is not present in the
proposed list.

24.2.9.4 NESTING-LEVEL-INSUFFICIENT

This error code is returned when the proposed Data Structure Nesting Level is too small for the desired
communication.

24.2.9.5 SERVICE-CBB-INSUFFICIENT

This error code is returned when a service CBB that is necessary for communication is missing from the proposed
list.

24.2.9.6 OTHER

This error code is returned due to a reason other than any of those identified for this error class.

24.2.10 Error Class - CONCLUDE

This error class is returned when problems are encountered with the conclude service. The error codes in this
class are:

24.2.10.1 FURTHER-COMMUNICATION-REQUIRED

This error code is returned when there are currently confirmed service requests for which responses have not been
generated or Upload state machine exists.

24.2.10.2 OTHER

This error code is returned due to a reason other than any of those identified for this error class.

24.2.11 Error Class - CANCEL

This error class is returned when problems are encountered with the cancel service. The error codes in this class
are:

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved350

24.2.11.1 INVOKE-ID-UNKNOWN

This error code is returned when there is no confirmed service request for which a protocol machine exists that has
the Invoke ID specified.

24.2.11.2 CANCEL-NOT-POSSIBLE

This error code is returned when the cancel service cannot be performed according to the service requirements.

24.2.11.3 OTHER

This error code is returned due to a reason other than any of those identified for this error class.

24.2.12 Error class - OTHERS

This error class is returned for device specific errors. The error codes for this class of errors are for future
extensions and errors not addressed by any existing error class.

24.2.13 Error class - FILE

This error class is returned for errors resulting from operations with files. The error codes in this class are:

24.2.13.1 FILENAME-AMBIGUOUS

This error code is returned when an attempt is made to access a file through the use of a filename, the specified
filename contains "wildcard" symbols, and more than one filename exists whose filename attribute matches the
specified (wildcard) filename.

NOTE This error cannot occur through the use of the MMS FileDirectory service, since this service allows the use of
filenames that reference more than one file.

24.2.13.2 FILE-BUSY

This error code is returned when the file is busy.

24.2.13.3 FILENAME-SYNTAX-ERROR

This error code is returned when the name of the file is syntactically incorrect.

24.2.13.4 CONTENT-TYPE-INVALID

This error code is returned when the file is not unstructured binary.

24.2.13.5 POSITION-INVALID

This error code is returned when the initial position specified is past the end of the file.

24.2.13.6 FILE-ACCESS-DENIED

This error code is returned when access to a file is requested, and access to that file is denied.

24.2.13.7 FILE-NON-EXISTENT

This error code is returned when access to a file is requested, and the file does not exist.

24.2.13.8 DUPLICATE-FILENAME

This error code is returned when an attempt is made to create a file with a filename with the same name as one that
already exists in the filestore.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 351

24.2.13.9 INSUFFICIENT-SPACE-IN-FILESTORE

This error code is returned when an attempt is made to add a file to the filestore, and no additional space is
available to accommodate the file.

24.2.13.10 OTHER

This error code is returned due to a reason other than any of those identified for this error class.

24.3 Additional Code

This is a locally defined option.

24.4 Additional Detail

This is a locally defined option. It may be used to provide a human readable description of the error.

24.5 Modifier Position

In the case that an error occurs while executing a modifier, the MMS-user shall use the above described error
classes and error codes that appropriately describe the error that occurred for that modifier. The Error Type
parameter shall be used to convey the error class and error code.

The Modifier Position parameter shall be present only if an error occurs during the processing of a modifier. This
parameter shall serve to identify unambiguously the modifier causing the error among all modifiers specified for
the service request instance. If no modifiers are specified, this parameter shall not be present.

The Modifier Position parameter, of type integer, shall identify which modifier caused the error to occur. The first
modifier in the list shall be represented by the value one (1), and subsequent modifiers in the list shall be
sequentially numbered.

Hence, if the Modifier Position parameter is present, the Error Type parameter identifies the error code and error
class for the error that occurred while executing the modifier. If the Modifier Position parameter is absent, the
Error Type parameter identifies the error code and error class for the error that occurred while executing the
procedure for the confirmed service.

If the Modifier Position parameter is present in the response service primitive for a service instance, no transition
shall occur in any state diagram referenced by the confirmed service request (except the transaction object's state).
The effect on all other state diagrams referenced by the confirmed service request (that is not executed as a result
of the modifier failure) shall be as if the service request had not been issued.

NOTE Since the confirmed service request is not executed as a result of the error during the execution of the modifier, the
confirmed service request is considered as if it had not been issued with respect to other state diagrams. For example,
an error in an AttachToSemaphore modifier specified on a Start service request results in the start service not being
executed. In this case, no transition in the Program Invocation state diagram is taken, the Program Invocation never
enters the starting state, even though a Start response service primitive with a result(-) parameter is issued.

25 MMS Standardized Names

25.1 Introduction

This clause specifies MMS standardized names. Standardized names are attributes of standardized objects. When
assigning a Standardized Name to an object, all attributes of the object shall be assigned a value. An
implementation that supports a Standardized Name shall specify these names in the CIS (see ISO 9506-2, clause
25).

There are two classes of standardized names:

a) MMS Standardized Names - these names are defined in this clause;

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved352

b) MMS Companion Standardized Names - these names are defined in an MMS Companion Standard (see
annex B).

25.2 Unique Name Assignment Mechanism

In order to allow separate standards bodies to define unique standardized names, a mechanism is provided to
ensure that a name is standardized by at most one standards making body. This mechanism shall operate as
follows:

a) All MMS Standardized Names shall begin with a two character sequence containing a capital letter "M"
and an underscore character.

b) All MMS Companion Standardized Names shall begin with a two character sequence containing a
Companion Standard prefix and an underscore character. Companion Standard prefixes are assigned by
and registered with the ISO TC184/SC5/WG2 Secretariat. The character "M" shall not be used as an MMS
Companion Standard prefix.

c) No name other than those standardized by this part of ISO 9506 or those standardized by an MMS
Companion Standard shall contain an underscore character in the second character position of the name.

d) Each body assigning standardized names shall ensure that the names that it standardizes are unique.

25.3 MMS Standardized Names

This clause specifies MMS Standardized Names. Each Standardized Name is associated with a Standardized
MMS object. For each such object, a standard definition of the object is also provided.

In order to provide an unambiguous identifier for the definition of a Standardized object, an Object Identifier value
is assigned to each such definition. Each such definition has a common root.

 mMSNamedVariable OBJECT IDENTIFIER ::=
{ iso standard 9506 part(1) symbols-version1(5) named-variable(1) }

 mMSAccessControlList OBJECT IDENTIFIER ::=
{ iso standard 9506 part(1) symbols-version1(5) access-control-list(2) }

 mMSEventCondition OBJECT IDENTIFIER ::=
{ iso standard 9506 part(1) symbols-version1(5) event-condition(3) }

If an object within an application matches a standard semantic for which a Standardized Name exists, the
application shall use the Standardized Name rather than provide a non-Standardized Name.

25.3.1 Named Variable Objects

This clause describes Standardized Names for Named Variable objects.

25.3.1.1 M_powerProblem

The Named Variable object with the Standardized Name of M_powerProblem shall indicate that the power system
needs attention. If this variable is true, the &physicalStatus field of the VMD shall be reported as
partially-operational or inoperable (see 7.2.1.11).

 m-powerProblem NAMED-VARIABLE ::= {
&name vmd-specific: "M_powerProblem",
&accessControl "M_ReadOnly",
&typeDescription boolean: NULL,
&accessMethod anythingElse,
&value boolean: FALSE }

The Object Identifier value

{ mMSNamedVariable m-powerProblem(1) }

is assigned to this definition.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 353

25.3.1.2 M_ELT

The Named Variable object with the Standardized Name of M_ELT shall indicate the number of seconds of
continuous operation since the last power reset.

 m-ELT NAMED-VARIABLE ::= {
&name vmd-specific: "M_ELT",
&accessControl "M_ReadOnly",
&typeDescription integer: 32,
&accessMethod anythingElse,
&value integer: 0 }

The Object Identifier value

{ mMSSNamedVariable m-ELT(2) }

is assigned to this definition.

25.3.1.3 M_DAYTIME

The Named Variable object with the Standardized Named of M_DAYTIME shall indicate the current time of day.
The date-time value in the &value field shall be initialized to the actual date and time of initialization of the VMD.

 m-DAYTIME NAMED-VARIABLE ::= {
&name vmd-specific: "M_DAYTIME",
&accessControl "M_NonDeletable",
&typeDescription generalized-time: NULL,
&accessMethod anythingElse,
&value generalized-time: "299107311200" }

The Object Identifier value

{ mMSNamedVariable m-DAYTIME(3) }

is assigned to this definition.

25.3.2 MMS Standardized Access Control Lists

25.3.2.1 M_Deletable

This standardized Access Control List object may be used for objects that may be deleted by use of the appropriate
MMS Delete service.

 m-Deletable ACCESS-CONTROL-LIST ::= {
&name "M_Deletable",
&accessControl "M_Never"

 }

The Object Identifier value

{ mMSAccessControlList m-Deletable(1) }

is assigned to this definition.

25.3.2.2 M_NonDeletable

This standardized Access Control List object may be used for objects that may not be deleted by use of an MMS
service.

 m-NonDeletable ACCESS-CONTROL-LIST ::= {
&name "M_NonDeletable",
&accessControl "M_Never",
&deleteAccessCondition never: NULL,
&NamedVariables { vmd-specific: "M_DAYTIME" }

 }

The Object Identifier value

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved354

{ mMSAccessControlList m-NonDeletable(2) }

is assigned to this definition.

25.3.2.3 M_ReadOnly

M_ReadOnly is a predefined Access Control List object that may be used in the definition of Variable objects.

 m-ReadOnly ACCESS-CONTROL-LIST ::= {
&name "M_ReadOnly",
&accessControl "M_Never",
&writeAccessCondition never: NULL,
&deleteAccessCondition never: NULL,
&editAccessCondition never: NULL,

IF (vnam)
&NamedVariables { vmd-specific: "M_ELT" |

vmd-specific: "M_DAYTIME" }
ENDIF
 }

The Object Identifier value

{ mMSAccessControlList m-ReadOnly(3) }

is assigned to this definition.

25.3.2.4 M_Never

M_Never is a predefined Access Control List object that is used in the definition of other Access Control List
objects.

 m-Never ACCESS-CONTROL-LIST ::= {
&name "M_Never",
&accessControl "M_Never",
&deleteAccessCondition never: NULL,
&editAccessCondition never: NULL,
&AccessControlLists { "M_Deletable" |

 "M_NonDeletable" |
 "M_Never" |
 "M_ReadOnly" },

&EventConditions { vmd-specific: "M_Violation" }
 }

The Object Identifier value

{ mMSAccessControlList m-Never(4) }

is assigned to this definition.

25.3.3 Event Condition Objects

M_Violation is a predefined Event Condition that occurs whenever an MMS client attempts an access to an object
for which it does not have access rights. Enrollments naming this Event Condition will be notified when such
attempts occur.

 m-Violation EVENT-CONDITION ::= {
&name vmd-specific:"M_Violation",
&accessControl "M_Never",
&ecClass network-triggered,
&ecState active,
&priority normalPriority,
&severity normalSeverity

 }

The Object Identifier value

{ mMSEventCondition m-Violation(1) }

is assigned to this definition.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 355

25.4 End of Module

The statement

 END

ends the module begun in Clause 7.

26 Conformance

26.1 Introduction

This clause specifies conformance requirements for this part of ISO 9506. Conformance is viewed in terms of
actions visible outside the system. There are requirements for the following areas:

Static Conformance
Calling MMS-users Conformance
Called MMS-users Conformance
MMS Server Conformance

MMS Client Conformance
Parameter CBBs Conformance
Dynamic Conformance

Some concepts used in specifying conformance will be described before the conformance requirements are
presented.

26.2 Conformance Building Blocks (CBBs))

The MMS Standard defines a conformance representation called a conformance building block (CBB), that is a list
of conformance requirements. A CBB is the smallest unit of measure of MMS conformance. There exist two
different types of CBBs: service CBBs and parameter CBBs. These two types of CBBs are described in more
detail below.

26.2.1 Service CBBs

A service CBB contains exactly one MMS service or modifier. It represents the service procedure and its
respective protocol requirements (abstract syntax) as described by this part of ISO 9506.

26.2.1.1 Requester Role CBBs

Requester Role CBBs are defined as CBBs in which the service procedure defined in this part of ISO 9506
indicates that the MMS server issue the service request for the confirmed or unconfirmed services. The following
service CBBs define the requester role for their service procedures:

DownloadSegment
TerminateDownloadSequence
RequestDomainDownload
RequestDomainUpload

UnsolicitedStatus
InformationReport
EventNotification

26.2.1.2 Responder Role CBBs

Responder Role CBBs are defined as CBBs in which the service procedure defined in this part of ISO 9506
indicates that the MMS server issue the service response for the confirmed services. The following service CBBs
define the responder role for their service procedures:

Initiate
Conclude
Cancel
DefineAccessControlList
GetAccessControlListAttributes
ReportAccessControlledObjects
DeleteAccessControlList
ChangeAccessControl
Status

GetNameList
Identify
Rename
GetCapabilityList
VMDStop
VMDReset
InitiateDownloadSequence
DownloadSegment
TerminateDownloadSequence

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved356

InitiateUploadSequence
UploadSegment
TerminateUploadSequence
LoadDomainContent
StoreDomainContent
DeleteDomain
GetDomainAttributes
CreateProgramInvocation
DeleteProgramInvocation
Start
Stop
Resume
Reset
Kill
GetProgramInvocationAttributes
Select
AlterProgramInvocationAttributes
ReconfigureProgramInvocation
InitiateUnitControlLoad
UnitControlLoadSegment
UnitContorlUpload
StartUnitControl
StopUnitControl
CreateUnitControl
AddToUnitControl
RemoveFromUnitControl
GetUnitControlAttributes
LoadUnitControlFromFile
StoreUnitControlToFile
DeleteUnitControl
Read
Write
GetVariableAccessAttributes
DefineNamedVariable
DeleteVariableAccess
DefineNamedVariableList
GetNamedVariableListAttributes
DeleteNamedVariableList
DefineNamedType
GetNamedTypeAttributes
DeleteNamedType
ExchangeData
GetDataExchangeAttributes
TakeControl
RelinquishControl
DefineSemaphore
DeleteSemaphore

ReportSemaphoreStatus
ReportPoolSemaphoreStatus
ReportSemaphoreEntryStatus
AttachToSemaphore
Input
Output
TriggerEvent
AcknowledgeEventNotification
GetAlarmSummary
GetAlarmEnrollmentSummary
AttachToEventCondition
DefineEventCondition
DeleteEventCondition
GetEventConditionAttributes
ReportEventConditionStatus
AlterEventConditionMonitoring
DefineEventAction
DeleteEventAction
GetEventActionAttributes
ReportEventActionStatus
DefineEventEnrollment
DeleteEventEnrollment
GetEventEnrollmentAttributes
ReportEventEnrollmentStatus
AlterEventEnrollment
DefineEventConditionList
DeleteEventConditionList
AddEventConditionListReference
RemoveEventConditionListReference
GetEventConditionListAttributes
ReportEventConditionListStatus
AlterEventConditionListMonitoring
ReadJournal
WriteJournal
InitializeJournal
ReportJournalStatus
CreateJournal
DeleteJournal
ObtainFile
FileOpen
FileRead
FileClose
FileRename
FileDelete
FileDirectory
DefineScatteredAccess
GetScatteredAccessAttributes

26.2.2 Parameter CBBs

A parameter CBB represents a single functional capability that can be associated with one or more parameters.

str1
str2
nest
vnam
vadr
valt
tpy
vlis

cei
aco
sem
csr
csnc
csplc
cspi
char

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 357

26.3 Static Conformance Requirements

The static conformance requirements is a set of conformance requirements that shall be met by every
implementation claiming conformance to this part of ISO 9506.

a) All implementations shall support all service procedures associated with Abort and Reject.

b) All implementations shall support all PDUs associated with Abort and Reject.

Annex A specifies additional static conformance requirements for an MMS system operated in an OSI
environment.

26.4 Calling MMS-user Conformance Requirements

This clause contains conformance requirements for all implementations that claim to be a Calling MMS-user. An
implementation that claims to be in conformance with the Calling MMS-user shall implement the requirements in
this clause as well as the static conformance requirements. A Calling MMS-user shall be capable of:

a) Establishing the MMS environment on an application association by issuing an Initiate service request and
receiving an Initiate service confirmation with a Result(+) parameter.

b) Offering the minor version number 4 as the value of the Proposed Version Number parameter in the
Initiate service request.

c) Accepting the minor version number 4 as the value of the Negotiated Version Number parameter in the
Initiate service response.

d) Supporting all services for which support is offered in the Services Supported Calling parameter of the
Initiate service request.

e) Supporting all parameters for which support is offered in the Proposed Parameter CBB parameter of the
Initiate service request.

26.5 Called MMS-user Conformance Requirements

This clause contains conformance requirements for all implementations that claim to be a Called MMS-user. An
implementation that claims to be in conformance with the Called MMS-user shall implement the requirements in
this clause as well as the static conformance requirements. A Called MMS-user shall be capable of:

a) Establishing the MMS environment on an application association by receiving an Initiate service indication
and sending an Initiate service response with a Result(+) parameter.

b) Accepting the minor version number 4 as the value of the Proposed Version Number parameter in the
Initiate service request.

c) Offering the minor version number 4 as the value of the Negotiated Version Number parameter in the
Initiate service response.

d) Supporting all services for which support is offered in the Services Supported Called parameter of the
Initiate service response.

e) Supporting all parameters for which support is offered in the Negotiated Parameter CBB parameter of the
Initiate service response.

26.6 Server Conformance Requirements

This clause contains conformance requirements for all implementations that claim to be an MMS server. An
implementation that claims to be an MMS server shall implement the requirements in this clause as well as the
static conformance requirements.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved358

26.6.1 General Server Conformance Requirements for Requester Role CBBs

The general server requirements for Requester Role CBBs are as follows:

a) Correctly initiate the service request associated with the CBB as a result of local action.

b) Correctly formulate all PDUs associated with the service request as defined in ISO 9506-2.

c) Accept all valid service responses as defined in this part of ISO 9506.

26.6.2 Specific Server Conformance Requirements for Requester Role CBBs

The following server requirements pertain to specific Requester Role CBBs:

a) If a server claims support for the RequestDomainDownload CBB, it shall also support the server
requirements for the InitiateDownloadSequence CBB, the DownloadSegment CBB, and the
TerminateDownloadSequence CBB.

b) If a server claims support for the RequestDomainUpload CBB, it shall also support the server requirements
for the InitiateUploadSequence CBB, the UploadSegment CBB, and the TerminateUploadSequence CBB.

26.6.3 General Server Conformance Requirements for Responder Role CBBs

The general server requirements for Responder Role CBBs are as follows:

a) Accept a valid service request associated with the CBB as defined in this part of ISO 9506.

b) Correctly execute the service procedure as defined in this part of ISO 9506.

c) Correctly formulate all PDUs associated with the service response as defined in ISO 9506-2.

26.6.4 Specific Server Conformance Requirements for Responder Role CBBs

The following server requirements pertain to specific Responder Role CBBs:

a) If a server claims support for the InitiateDownloadSequence CBB, it shall also support the server
requirements for the DownloadSegment CBB and the TerminateDownloadSequence CBB.

b) If a server claims support for the InitiateUploadSequence CBB, it shall also support the server
requirements for the UploadSegment CBB and the TerminateUploadSequence CBB.

c) If a server claims support for the FileOpen CBB, it shall also support the server requirements for the
FileClose CBB.

26.7 Client Conformance Requirements

This clause contains conformance requirements for all implementations that claim to be an MMS client. An
implementation that claims to be in conformance with the MMS client shall implement the requirements in this
clause as well as the static conformance requirements.

26.7.1 General Client Conformance Requirements for Requester Role CBBs

The general client requirements for Requester Role CBBs are as follows:

a) Accept a valid service request associated with the CBB as defined in this part of ISO 9506.

b) Correctly execute the service procedure as defined in this part of ISO 9506, if a service procedure is
indicated.

c) Correctly formulate all PDUs associated with the service response as defined in ISO 9506-2, if any.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 359

26.7.2 Specific Client Conformance Requirements for Requester Role CBBs

The following client requirements pertain to specific Requester Role CBBs:

a) If a client claims support for the RequestDomainDownload CBB, it shall also support the client
requirements for the InitiateDownloadSequence CBB, the DownloadSegment CBB, and the
TerminateDownloadSequence CBB.

b) If a client claims support for the RequestDomainUpload CBB, it shall also support the client requirements
for the InitiateUploadSequence CBB, the UploadSegment CBB, and the TerminateUploadSequence CBB.

c) If a client defines an Event Enrollment object with the value of the &aaRule field equal to ack-active
or ack-all, the client shall support the client requirements for the AcknowledgeEventNotification CBB.

26.7.3 General Client Conformance Requirements for Responder Role CBBs

The general client requirements for Responder Role CBBs are as follows:

a) Correctly formulate all PDUs associated with the service request as defined in ISO 9506-2.

b) Accept all valid PDUs as defined in ISO 9506-2.

26.7.4 Specific Client Conformance Requirements for Responder Role CBBs

The following client requirements pertain to specific Responder Role CBBs:

a) If a client claims support for the InitiateDownloadSequence CBB, it shall also support the client
requirements for the DownloadSegment CBB and the TerminateDownloadSequence CBB.

b) If a client claims support for the InitiateUploadSequence CBB, it shall also support the client requirements
for the UploadSegment CBB and the TerminateUploadSequence CBB.

c) If a client claims support for the FileOpen CBB, it shall also support the client requirements for the
FileRead CBB and the FileClose CBB.

26.8 Parameter CBB Conformance Requirements

An implementation claiming conformance to a parameter CBB shall be capable of performing the following tasks
for those services indicated in the Initiate service:

a) Correctly executing the service procedure associated with the parameter as defined in the services that
indicate the CBB in the respective service clauses in this part of ISO 9506.

b) Correctly formulate all PDUs as defined in the respective service clause in ISO 9506-2 for those services
indicated in the Initiate service request or response that contain a parameter representing the CBB.

c) An implementation claiming support for tpy shall be capable of:

1) Receiving MMS service requests with parameters indicating a resource located on a third party.

2) Maintaining a communications path with the third party while the specified resource is being
obtained.

3) Obtaining the specified resource from, or exchanging information with the third party through the
communications path.

NOTE Some service procedures require that the server maintain an application association with the third party, while others
do not. See the specific service procedures for these details.

The implementation may perform these tasks in any way that fulfils the requirements of the MMS service request.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved360

26.9 Dynamic Conformance

Dynamic conformance to this part of ISO 9506 requires that an implementation exhibit behaviour consistent with
the static conformance claimed, and any other area of conformance claimed as described in this clause.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 361

Annex A
(normative)

Relationship of the VMD to an OSI Communication System

A.1 Introduction

Clause 6 introduced the basic concepts in the OSI model and clause 7 related the VMD to these concepts. This
annex describes how these relations are realized in an OSI communication system.

A VMD may wholly contain zero or more AEs. Each AE in a VMD represents a set of communication
capabilities used by the aspects of the AP represented by a VMD. Each AE is related to one and only one VMD.
If a VMD contains more than one AE, it contains more than one set of communication capabilities.

At any instant of time, each AE-title is bound to a single presentation-address that identifies a set of PSAPs to
which the AE-title is bound and therefore the AE-title is addressable in OSI. Communication with a particular AE
is used to model communication with a VMD, and hence an AP. Application associations are modelled as taking
place between AEs (and hence VMDs and APs).

An AE within an AP may have zero or more AE-invocations. For the purposes of MMS, each AE-invocation
models an instance of usage of that AE in an application association. Hence, several AE-invocations of an AE
may be used to model several application associations with a VMD that contains that AE. By generalization, there
may simultaneously exist several AEs of a VMD, with several associations each (modelled by multiple
AE-invocations). Note that in OSI a more generalized view allows an AE-invocation to have more than one
application association.

An OSI Presentation Address that identifies one or more PSAPs addresses a single VMD. This binding of a
Presentation Address to a VMD is of a relatively long duration. Figure A.1 illustrates the relationship between an
OSI application process acting as an MMS server, its VMDs, and the PSAPs used to access them.

(PSAPa) (PSAPb) (PSAPc)

Application Process

Presentation
Addesss

Presentation
Addesss

VMD-1 VMD-2

Figure A.1 - The MMS Server Application Process

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved362

A.2 Addressing of Application Entities

ISO 7498-3 describes naming and addressing concepts in the OSI environment. This subclause describes how
some of these concepts apply to MMS.

A Presentation-address is associated with a set of PSAPs in a single real system. An AE is attached to one or more
Presentation Service Access Points (PSAPs) in order to make it addressable in the OSI environment.

Each AE is identified by one or more application-entity-titles (AE-titles), which are unambiguous throughout the
OSI environment (OSIE). At any instant of time, each AE-title is bound to a single Presentation-address that
identifies the set of PSAPs to which the AE is attached. This binding is recorded in the Application Title
Directory Service that contains information about AEs.

A system may access the Application Title Directory Service via the OSI Directory Service (ISO 9594).
Conceptually, each system contains a directory function, from which AEs may obtain addressing information.
This directory function may operate via the use of a local cache, or may utilize the Application Title Directory
Service via the OSI Directory Service, in order to satisfy requests from AEs.

NOTE This is only a conceptual model; there are many valid implementation styles.

In order for an application-entity to establish an application association (AA) with another AE, it must know the
Presentation-address or obtain it by using the called AE-title to get the Presentation-address of the AE from the
directory function. It then uses this Presentation-address to establish a presentation connection with the called AE.
The mechanisms for control of associations are provided in ISO/IEC 8649 and ISO/IEC 8650 by the Association
Control Service Element (ACSE). Since an AE is the representation of an AP within OSI, the establishment of
communication to support an association with the called AE is the establishment of communication with the
related AP.

This International Standard makes use of an "Application Reference" to identify an AE in another system, by
making use of its title as defined in ISO/IEC 8649. The syntax of an Application Reference is defined in ISO
9506-2.

A.3 Conformance Requirements

In addition to the static conformance requirements stated in 26.3, an implementation operating in an OSI
environment shall also meet the following conditions.

a) All implementations shall support the MMS PDU mappings on to the ACSE and Presentation services as
defined in ISO 9506-2, clause 17.

b) All implementations shall be able to negotiate (through the Presentation services) and support the
Presentation context resulting from the application of the ASN.1 Basic Encoding Rules (ISO/IEC 8825) to
the abstract syntax defined by ISO 9506-1 and ISO 9506-2.

c) A called MMPM shall determine the Access Conditions for the calling node in accordance with the
Authentication-mechanism name and Authentication-value parameters within the AARQ.

d) A calling MMPM shall determine the Access Conditions for the called node in accordance with the
Authentication-mechanism name and Authentication-value parameters within the AARE.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 363

Annex B
(normative)

Requirements for Companion Standards

B.1 Introduction

The Manufacturing Messaging Specification (MMS) resides in the application layer of the Open Systems
Interconnection (OSI) model. Although this International Standard is applicable to a wide range of applications,
this International Standard does not contain information on specific applications. This International Standard
specifies syntax and semantics of general messages suitable for communication between automata.

While this International Standard specifies the syntax and semantics for a base application, there are other
application areas that need more definition to provide coverage. Consequently, this International Standard
provides for a Companion Standard to extend the base application to a specific application area.

A Companion Standard provides for a standardized model of the application in terms of a set of object models
appropriate to elements of the application. The Companion Standard will define these application objects by
providing a mapping to the standard objects of MMS. The Companion Standard will provide the additional
semantics necessary to understand the effect of the MMS services that act on these objects.

B.2 Scope

The purpose of this annex is to guide standards organizations involved in the writing of Companion Standards for
the Manufacturing Messaging Specification. In order to ensure that the Companion Standards contain sufficient
information for interoperability of applicable equipment, this annex imposes guidelines that the Companion
Standard shall follow. This annex contains an outline for a Companion Standard, with directions for the format
and content of each clause of the resulting document.

B.3 Requirements

A Companion Standard shall be written by the standards organization most familiar with the specific application
area in cooperation with ISO TC 184/SC 5/WG 2. In order to demonstrate the need for a new MMS Companion
Standard, an application area must have been judged to be a suitable area for the application of MMS messaging,
and must meet at least one of the following requirements:

a) There exists the need to append additional semantics to MMS service procedures, and no existing MMS
Companion Standard defines or intends to define identical semantics.

b) The existing MMS Companion Standards do not have the standardized names that are deemed necessary
for the application area.

The following requirement does not constitute the need for a new MMS Companion Standard:

c) The conformance classes defined in the existing MMS Companion Standards do not have a class that
defines the subset of MMS services deemed necessary and/or minimal for a particular application.

B.4 Outline of an MMS Companion Standard

The general process of developing a Companion Standard involves three main parts.

a) The Application Area proposed for Standardization shall be described in general, functional terms through
the creation of an Application-Specific model of the Application Area.

b) The elements of the Application-Specific model shall be mapped to MMS abstract objects.

c) The elaboration of the semantics of MMS services needed to understand their effect in the application area
shall be described.

d) Definitions of standardized objects appropriate to the application area shall be defined.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved364

In the course of describing the process of developing a Companion Standard, two levels of abstraction will be
distinguished. The abstractions present in the MMS Standard (that is, VMD, Domains, etc,) will be referred to as
MMS abstract objects. The Application Area will also be described by an abstract model that will be referred to as
being composed of Application-Specific objects. However, the level of abstraction in the Companion Standard
should be considerably less than in MMS; the concepts presented should be easily identified with real
implementations.

Following is an outline of clauses for a Companion Standard. The intended content and format of each clause are
explained in the following clauses:

Title Page
Foreword
Table of Contents

Introduction
1 Scope
2 Normative References
3 Definitions
4 Symbols and Abbreviations

5 Application Description
5.1 Application-specific Model
5.2 Application-specific Functions

6 Application-specific Context Mapping
6.1 Mapping of the Application-specific Model to the VMD Object
6.2 Definition of Application-specific Objects that Map to Domains
6.3 Definition of Application-specific Objects that Map to Program Invocations
6.4 Definition of Application-specific Objects that Map to Other MMS Abstract

Objects

7 Standardized Application-specific Objects
7.1 Domain Objects
7.2 Program Invocation Objects
7.3 Unit Control Objects
7.4 Named Variable Objects
7.5 Named Variable List Objects
7.6 Named Type Objects
7.7 Semaphore Objects
7.8 Operator Station Objects
7.9 Event Condition Objects
7.10 Event Action Objects
7.11 Event Enrollment Objects
7.12 Event Condition List Objects
7.13 Journal Objects
7.14 Data Exchange Objects
7.15 Access Control List Objects

8 Conformance
8.1 Conformance Class Descriptions
8.2 Restrictions on MMS Optional Parameters
8.3 Conformance to Standardized Objects
8.4 Additions to the MMS CIS

A Application-specific Examples (Informative)

B.4.1 The "Foreword"

The foreword shall appear in every Companion Standard. It shall consist of a general part giving information
relating to the responsible organization, and a specific part giving as much of the following information as
possible:

a) an identification of the committee that prepared the standard,

b) information regarding the approval of the standard,

c) identification of any other national or international organizations that have contributed to the preparation of
the standard,

d) a statement that the standard supersedes and replaces all other documents in whole or in part,

e) a statement of significant technical changes from the previous version of the standard, if any,

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 365

f) the relationship of the standard to other standards and documents, and a statement of which annexes are
normative and which annexes are informative.

B.4.2 The "Introduction" clause

The Introduction clause shall contain a general description of the document in form and content, and a statement
of the purpose of the document. Reasons for the preparation of the Companion Standard should be provided.

B.4.3 The "Scope" clause

Since in general an application area is described in terms of server behaviour, it is expected that the scope of an
MMS Companion Standard will be based on the server role as defined within the MMS Standard. However, in the
course of carrying out its server role, the device that supports the application may need to act as a client to other
MMS server systems. Therefore, in the "Scope" clause, the Companion Standard shall state that its scope includes
the definition and description of either the server role, the client role, or both for that particular application area.
This clause shall also describe the general environment and areas of application in which the Companion Standard
is envisaged, including the type of equipment for which the standard applies.

B.4.4 The "Normative References" clause

This clause shall provide a list of documents that are referenced within the Companion Standard. There shall be
no documents in the Normative reference clause that are not mentioned elsewhere in the Companion Standard.

B.4.5 The "Definitions" clause

This clause shall provide definitions of all new terms introduced within the Companion Standard. The following
is a set of rules to which the Companion Standard shall adhere when defining terms:

a) Define all terms used for the application area.

b) Define terms that may have a different meaning when used outside of the Companion Standard.

c) Provide a mapping of the application area terminology to the MMS terminology when there exist common,
well-known terms in the application area that have the same meaning as different terms in the MMS
Companion Standard (e.g., a "file" in some application areas may actually be a domain object when viewed
in the MMS environment).

d) Do not redefine terms defined within the MMS Standard.

e) Provide the MMS Standard as a reference, or copy verbatim the definitions of the MMS terms if it is
necessary to refer to these definitions in the Companion Standard.

NOTE The reference method is preferred because it eliminates the possibility of the Companion Standard becoming
misaligned with the MMS Standard.

B.4.6 The "Symbols and Abbreviations" clause

This clause shall provide the meanings of all of the symbols, abbreviations, and acronyms used within the
Companion Standard.

B.4.7 The "Application Description" clause

This clause shall describe the environment within which the applications adhering to the Companion Standard
operate. The objective of this clause should be to describe the application area in a hierarchy of models that can
then be related to the MMS abstract models in the next clause. In doing so, the Companion Standard shall make
their models more specific than the abstract models in MMS, and still general enough so that they embrace the
breadth of possible implementations for the application area. The model elements shall be presented
independently of MMS, however, without reference to MMS specific terms such as VMD and Domains.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved366

B.4.7.1 The "Application Models" subclause

The application models shall develop a set of consistent functional models describing the elements of the
application area. In most cases, a state diagram for the major elements of the model should be included. The
subclause shall indicate the relationship between the specific application areas covered by the Companion
Standard and the larger manufacturing environment. Architectural models describing functionality of devices and
other entities shall be explained. If the Application Area includes device subsystems, they shall also be described
in this clause.

B.4.7.2 The "Application-specific Functions" subclause

Using the model elements of the previous subclause, this subclause shall describe the functions that operate on the
elements necessary to support the application area. There shall be a subclause to describe each of the functions.
Functions shall be described in general terms, without reference to MMS services.

B.4.8 The "Application-specific Context Mapping" clause

Each MMS Companion Standard shall define its own application-specific application context as an extension of
the MMS application context. The application-specific application context shall contain all of the following items:

a) the mapping of the Application-specific Model to the Virtual Manufacturing Device Object (VMD),

b) the mapping of Application-specific objects to Domains,

c) the mapping of Application-specific objects to Program Invocations,

d) the mapping of Application-specific objects to other MMS Abstract Objects.

B.4.8.1 The "Mapping of the Application-specific Model to the VMD Object" subclause

This subclause shall provide the mapping of the Application-specific model developed in the previous clause to
the MMS VMD Object.

B.4.8.2 The "Definition of Application-specific Objects that Map to Domains" subclause

Within this subclause, the Companion Standard shall list the application-specific objects that are to be represented
by MMS Domains, and the exact mapping of object functionality to the Domains.

B.4.8.3 The "Definition of Application-specific Objects that Map to Program Invocations"
subclause

Within this subclause, the Companion Standard shall list the application-specific objects that are to be represented
by MMS Program Invocations and the exact mapping of object functionality to the Program Invocation.

B.4.8.4 The "Definition of Application-specific Objects that Map to Other MMS Abstract Objects"
subclause

A Companion Standard shall specify the mapping of other application-specific objects on to the Unnamed
Variable Object, Named Variable Object, Unit Control Object, Semaphore Object, Operator Station Object, Event
Condition Object, Event Action Object, Event Enrollment Object, Event Condition List Object, Journal Object,
and Data Exchange Object. For the Named and Unnamed Variable Object, a description of any
application-specific requirements on the V-Get and V-Put functions shall be included. For the Data Exchange
Object, a description of any application specific requirements on the D-Exchange Function shall be included.

B.4.9 The "Standardized Application-specific Objects" clause

This clause shall describe all of the standardized objects used with this Companion Standard. Such objects
defined in this Companion Standard should be given standardized names. These names shall meet three criteria:

a) The name identifies an object commonly available in vendor systems.

b) The name is consistent with common usage.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 367

c) The name is unambiguously defined.

Each standardized object shall be described using the ASN.1 object instance format used throughout this Standard.
Each standardized object shall be assigned a standardized name that is the Key Attribute of that object.

A standardized name shall begin with the prefix assigned to the Companion Standard. For details on the naming
conventions for standardized names, and for further rules in assigning standardized names, refer to clause 25.

The Companion Standard shall include the subclauses for "Standardized Objects" appropriate to the objects being
defined. The definition shall be in the form of an ASN.1 value definition, and an ASN.1 Object Identifier value
shall be provided for each definition. See clause 25 for an example of this structure.

B.4.10 The "Conformance" clause

The Conformance clause shall contain all of the conformance requirements for implementations adhering to the
Companion Standard. Companion Standards shall define all of the conformance requirements for their
application-specific area(s).

B.4.10.1 The "Conformance Class Descriptions" subclause

In the "Application Description" clause, independent functions were defined. The process of defining
conformance classes consists of grouping these previously defined functions into combinations intended to fulfil
specific application needs. Classes may be based on any of the following:

a) types of equipment,

b) types of applications, and

c) levels of performance.

The conformance classes may or may not represent a hierarchical sequence of groupings. Classes based on
different applications may partially overlap in terms of the services supported. Within a specific application, there
may be multiple classes based on level of performance, and these classes may be hierarchical. Since a given piece
of equipment may support more than one conformance class, it is not necessary to include all possible functions in
any one class. A Companion Standard shall indicate upon which of the above groupings (e.g., type of equipment)
each conformance class is based (it may be one or more).

B.4.10.1.1 The "Service Conformance Building Blocks" subclause

The Companion Standard shall summarize the MMS services that are needed by each service conformance class.
The following conformance matrix format is recommended for the summary of required services for each
conformance class. The names of actual conformance classes shall replace X1, X2, etc. An asterisk or other
character placed in a given row and column indicates that the associated service is required for the associated
class. It may also be necessary to clarify in comments whether a service is supported as an MMS requester or
MMS responder or both.

NOTE There need not be nine conformance classes. X1 through X9 is shown as an example for both the service and the
parameter conformance class tables.

Service CONFORMANCE CLASS
 X1 X2 X3 X4 X5 X6 X7 X8 X9

Initiate
Conclude
Status
 .
 .
 .

B.4.10.1.2 The "Parameter Conformance Building Blocks" subclause

The composition of the conformance classes with respect to parameter building blocks shall be described similarly
to the service building blocks.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved368

Parameter CONFORMANCE CLASS
 X1 X2 X3 X4 X5 X6 X7 X8 X9

str1
str2
...
...
csplc
cspi

B.4.10.1.3 The "Other Initiate Specified Parameters" subclause

This subclause shall describe required or restricted values for the other parameters that are conveyed in the Initiate
Request and Initiate Response. These include NEST (the maximum nesting level of arrays and structures), the
maximum number of service requests outstanding that can be supported as a server, and the maximum number of
service requests outstanding that are required as a client.

B.4.10.2 The "Restrictions on MMS Optional Parameters" Subclause

A Companion Standard may restrict options that exist in MMS services. Such restrictions may involve either
requiring or forbidding certain optional parameters, or specifying the possible ranges of such parameters. If the
restrictions are different for each conformance class, these restrictions belong in this subclause.

B.4.10.3 The "Conformance to Standardized Objects" subclause

The conformance subclause shall indicate which Standardized Objects are required for each conformance class, if
such requirements exist.

B.4.11 The "Application-specific Examples" Annex

There are no examples in the MMS Standard, because it was felt that the best examples of the use of MMS would
be based on specific applications. Therefore, each Companion Standard shall contain examples based on the
application areas covered by the standard.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 369

Annex C
(normative)

File Access service

The MMS File Access Service provides the necessary functionality to direct the MMS server to obtain a file from
an auxiliary filestore. This annex provides the ObtainFile service.

C.1 ObtainFile service

The ObtainFile service may be used by an MMS client to request an MMS server to obtain a specified file from a
specified file server, possibly from the MMS client requesting the ObtainFile service.

C.1.1 Structure

The structure of the component service primitives is shown in Table C.1.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Source File Server
 Source File
 Destination File

Result(+)

Result(-)
 Error Type
 File in Error

M
U
M
M

M(=)
U(=)
M(=)
M(=)

S

S
M
C

S(=)

S(=)
M(=)
C(=)

tpy

Table C.1 - ObtainFile service

C.1.1.1 Argument

This parameter shall convey the parameters of the ObtainFile service request.

C.1.1.1.1 Source File Server

This parameter, if present of type Application Reference, specifies the server from which the source file is to be
obtained. If absent, the MMS client requesting this service is the Source File Server.

NOTE It is not required that all file servers support MMS. It is an implementation issue for the MMS server to determine
which (if any) of the file transfer protocols it supports can be used for communication with the file server.

C.1.1.1.2 Source File

This parameter, of type FileName, uniquely names a single existing file in the filestore of the Source File Server.

C.1.1.1.3 Destination File

This parameter, of type FileName, specifies the name to be assigned to the newly acquired file in the filestore of
the destination system (the MMS server).

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved370

C.1.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

C.1.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

C.1.1.3.1 File In Error

This parameter is present if it is necessary to distinguish whether a particular error pertains to the source or
destination file. It takes on one of the values SOURCE-FILE or DESTINATION-FILE.

C.1.2 Service Procedure

C.1.2.1 Preconditions

The MMS server shall verify that the destination file does not already exist; if this condition is not satisfied, a
Result(-) shall be returned and the remainder of this procedure shall be skipped.

C.1.2.2 Actions

The MMS server shall communicate with the designated file server to obtain the contents of the source file and
place it in the specified destination file.

If the file transfer succeeds, the MMS server shall return a Result(+).

If the file transfer fails, the MMS server shall:

a) if the failure occurs after the Destination File has been created, the MMS server shall delete the Destination
File.

b) return a Result(-).

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 371

Annex D
(informative)

File Management services

NOTE Although this annex is not normative, prescriptive language rather than recommendations are used in order to clarify
the requirements for correct operation of the services in this annex.

D.1 Introduction

The MMS File Management services provide the necessary functionality for reading files containing control
programs and data from filestores in control devices and file servers, and for managing filestores by enumerating
the names and attributes of files, renaming, and deleting files.

D.2 The MMS File Model

MMS file services define the necessary functionality for reading and managing units of information, called files,
among Application Processes, APs. This functionality is modelled in relation to an entity called the MMS Virtual
Filestore. The MMS Virtual Filestore is a container for a collection of files and a specification of the attributes
and properties of those files. Not all APs contain filestores, but a filestore is a required part of any AP that
supports the file services defined in this annex.

NOTE The MMS Virtual Filestore is a virtual object that is mapped to a real object. The location and implementation of the
real filestore is an implementation issue. For example, a real MMS device without a filestore of its own could
implement an MMS Virtual Filestore using the services of a private network and fileserver.

D.2.1 Scope

The MMS file services and the structure of the MMS Filestore are intentionally limited in scope to simplify
implementation in functionally restricted devices, and because additional functions are more properly addressed by
other protocols. Services are provided for full file transfer (with limited restart capability) of files, as well as
miscellaneous housekeeping services, but not for random access to or modification of files.

The MMS Virtual Filestore addresses a single file format - sequential unstructured binary - which may contain
programs, data, or both. Any interpretation of the contents is by mutual agreement of the systems involved.
Preparation of files is a device-dependent issue that may be dealt with by the application, the user, or both.
Services are not provided for transforming file content into different representations.

Example: An APT part program might be postprocessed several times, creating separate program files for different devices
or device types, and these files might be named according to the device type. An application responsible for
downloading part programs would then select the appropriate program file name based on both the part to be
produced and the device used.

D.2.2 MMS File Attributes

MMS defines the following file attributes. If additional attributes are present in the real filestore, their values are
assigned in an implementation defined way.

D.2.2.1 Content Type

MMS supports only one content type. As a result, there is no file attribute in MMS that describes content type.
However, if an MMS Virtual Filestore and an FTAM Virtual Filestore are mapped to the same real filestore, files
written by MMS have an FTAM content type of:

{iso standard 8571 document-type(6) unstructured-binary(3) }

that will hereafter be referred to as unstructured binary. In simple terms this means that MMS files contain only a
sequence of octets.

The mapping of the MMS Virtual Filestore onto a real filestore may result in the presence of files detectable via
MMS file services but which are not unstructured binary. The result of applying MMS services to such files is not
specified by this International Standard except for providing error codes that may be used to report the problem.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved372

D.2.2.2 File Name

Each file in the MMS Virtual Filestore has an associated file name. This name is represented as a sequence of
graphic strings. (This definition is compatible with FTAM (ISO 8571).) Each MMS server is free to make
additional restrictions on the structure and content of file names within its filestore.

This International Standard makes one extension to the semantics of file names defined in FTAM. This
International Standard permits a file name to represent a group of files - a feature common in conventional file
systems. While this International Standard does not specify how (or even if) this should be represented, it may
take the form of a directory name or name containing wildcard characters. In order to reduce the possibility of
error and simplify service definitions, most services require file names to identify uniquely a single file, but the
FileDirectory service allows use of names that identify groups of files.

D.2.2.3 Size

File size (in octets) is an attribute associated with each file in the filestore. In principle this size is exact since it
can be determined by reading the file and counting the octets received. However only an approximation to this
exact size need be reported.

D.2.2.4 Last Modified

The time of day and date when the file was last modified is an optional attribute of files in the MMS Virtual
Filestore. Since files can only be created but not otherwise modified using MMS services, this will record the time
of creation unless the file has been modified by other means.

This attribute is optional in the MMS Virtual Filestore in order to permit implementation on systems that do not
have access to date and time information. However, implementations that have the information in their filestore
are required to report it in applicable service responses.

D.2.3 File Read Sequence

The following services may be used by an MMS client to read files from an MMS server:

FileOpen
FileRead
FileClose

These services are grouped and require a particular order of invocation. This grouping is specified by the File
Read State Machine (FRSM) depicted in Figure D.1 below. Each successful FileOpen service invocation creates
an FRSM that is identified by a unique (among all active FRSMs on the association) FRSM ID. The FRSM shall
be created and the FRSM ID assigned at the time of the open by the MMS server. An FRSM may only be
referenced via the assigned FRSM ID, and only over the association through which it was assigned. The FRSM
shall be deleted and the FRSM ID released via the FileClose service or when the association is aborted.

Closed Open
File Open

File Close

Abort

File Read

Figure D.1 - File Read State Machine

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 373

The FRSM for an open file shall maintain a certain amount of state information, such as file name, FRSM ID,
position in the file, location of the end of the file, and possibly other implementation-specific data.

D.3 FileOpen service

The FileOpen service is used by an MMS client to identify a file to be read, and to establish the open state for the
FRSM.

D.3.1 Structure

The structure of the component service primitives is shown in Table D.1.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 File Name
 Initial Position

Result(+)
 FRSM ID
 File Attributes

Result(-)
 Error Type

M
M
M

M(=)
M(=)
M(=)

S
M
M

S
M

S(=)
M(=)
M(=)

S(=)
M(=)

Table D.1 - FileOpen service

D.3.1.1 Argument

This parameter shall convey the parameters of the FileOpen service request.

D.3.1.1.1 File Name

This parameter, of type FileName, shall unambiguously identify a single file to be opened for reading within the
MMS server's virtual filestore.

While the parameter File Name may be specified with whatever the local system permits as wildcard specification,
the resolution of the wildcard shall result in a single name. If not, an error shall be returned.

D.3.1.1.2 Initial Position

The Initial Position parameter, of type integer, shall be a non-negative value that shall specify where within the file
content the first file read will begin to transfer data. A value of zero (0) shall indicate that transfer will begin at the
beginning of the file. A larger value shall cause the specified number of octets at the beginning of the file to be
skipped.

D.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

D.3.1.2.1 FRSM ID

This parameter, of integer type, shall identify the FRSM created by the MMS server for controlling the file
transfer. This parameter is to be used on subsequent FileRead service requests and the FileClose service request in
order to identify the file.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved374

D.3.1.2.2 File Attributes

This parameter shall contain attribute information describing the file that is being opened. This information
consists of the size of the file and time of day and date of last modification. See D.9 for further details of the
sub-parameters of the File Attributes parameter.

D.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

D.3.2 Service Procedure

D.3.2.1 Preconditions

The MMS server shall verify that:

a) its state and resources allow it to support the reading of a file;

b) the name specifies a single file that is resident in the virtual filestore and can be accessed;

c) the client is permitted to read the specified file;

d) the Initial Position lies within the file;

If any of these conditions is not met, the MMS server shall return a Result(-) response.

D.3.2.2 Actions

The MMS server shall take whatever steps are necessary to prepare to send the file to the MMS client. Once a file
is opened, the MMS server shall prevent any action (either remotely or locally) that would alter the response to
FileRead requests for that open file. This may be achieved by forbidding the modification, renaming and deletion
of open files, or by other means.

D.4 FileRead service

The FileRead service is used by an MMS client to transfer all or part of the contents of an open file from the MMS
server to the MMS client.

D.4.1 Structure

The structure of the component service primitives is shown in Table D.2.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 FRSM ID

Result(+)
 File Data
 More Follows

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M

S
M

S(=)
M(=)
M(=)

S(=)
M(=)

Table D.2 - FileRead service

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 375

D.4.1.1 Argument

This parameter shall convey the parameters of the FileRead service request.

D.4.1.1.1 FRSM ID

This parameter, of type integer, shall specify the value of the FRSM ID assigned in the FileOpen service,
identifying the FRSM of the file being read.

D.4.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

D.4.1.2.1 File Data

This parameter is of type octetstring. If the position maintained by the FRSM is prior to the end of the file, a
non-zero length contiguous portion of the file content starting at the file position and proceeding in the direction of
the end of the file shall be returned as the value of this parameter. If the file position is at the end of the file, a zero
length octetstring shall be returned.

D.4.1.2.2 More Follows

This boolean parameter shall indicate whether (true) or not (false) additional content remains to be read from the
file. This parameter shall be false if File Data is a zero length octetstring.

D.4.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

D.4.2 Service Procedure

D.4.2.1 Preconditions

The MMS server shall verify that:

a) the FRSM exists;

b) the FRSM references a file that may be read by the MMS client.

If any of these condition is not met, a Result(-) shall be returned.

D.4.2.2 Actions

The MMS server shall determine if the file position is at the end of file. If so, the MMS server shall return a zero
length octetstring for the file data and a value of false for More Follows.

Otherwise, the MMS server shall return a portion of the file beginning with the current position (maintained by the
FRSM) as File Data, the file position shall be advanced, and if more of the file remains, a value of true returned
for More Follows. If the last portion of the file is returned, More Follows shall be false.

D.5 FileClose service

The FileClose service is used by the MMS client to release resources associated with the file transfer. The
successful FileClose service causes the corresponding FRSM to be deleted, and the FRSM ID to be available for
reassignment.

D.5.1 Structure

The structure of the component service primitives is shown in Table D.3.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved376

 Parameter Name Req Ind Rep Cnf CBB

Argument
 FRSM ID

Result(+)

Result(-)
 Error Type

M
M

M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table D.3 - FileClose service

D.5.1.1 Argument

This parameter shall convey the parameters of the FileClose service request.

D.5.1.1.1 FRSM ID

This parameter, of integer type, shall specify a FRSM ID assigned in a prior FileOpen response over the same
association, and shall identify the FRSM of the file to be closed.

D.5.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

D.5.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

D.5.2 Service Procedure

The MMS client shall issue a FileClose service request upon receiving a FileRead service confirm primitive in
which the moreFollows parameter equals false. The MMS server shall issue a Result(+).

D.6 FileRename service

The FileRename service may be requested by an MMS client to change the name of a file in the virtual filestore of
an MMS server.

D.6.1 Structure

The structure of the component service primitives is shown in Table D.4.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 377

 Parameter Name Req Ind Rep Cnf CBB

Argument
 Current File Name
 New File Name

Result(+)

Result(-)
 Error Type
 File in Error

M
M
M

M(=)
M(=)
M(=)

S

S
M
C

S(=)

S(=)
M(=)
C(=)

Table D.4 - FileRename service

D.6.1.1 Argument

This parameter shall convey the parameters of the FileRename service request.

D.6.1.1.1 Current File Name

This parameter, of type FileName, shall identify a single file to be renamed in the MMS server's virtual filestore.

NOTE While the parameter Current File Name may be specified with whatever the local system permits as wildcard
specification, the resolution of the wildcard should result in a single name. If not, an error should be returned.

D.6.1.1.2 New File Name

This parameter, of type FileName, shall specify the new name of the designated file in the MMS server's virtual
filestore.

D.6.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

D.6.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, shall provide the reason for failure. When failure is indicated, the following parameter shall
be returned.

D.6.1.3.1 File In Error

This parameter shall be present if it is necessary to distinguish whether a particular error pertains to the source or
destination file. It shall take on one of the values SOURCE-FILE or DESTINATION-FILE. This parameter shall
not be present if the failure of this service is due to a failure of a modifier (see 24.5).

D.6.2 Service Procedure

D.6.2.1 Preconditions

The MMS server shall verify that:

a) the Current File Name identifies a unique, accessible file in the server's virtual filestore;

b) the file is in a state to be renamed;

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved378

c) the client has the privilege to rename the specified file;

d) the New File Name is a valid new name for the file.

e) a file with the name equal to New File Name does not exist.

If any of these conditions is not met, the MMS server shall return a Result(-).

D.6.2.2 Actions

The MMS server shall rename the file as indicated and return a Result(+) response.

D.7 FileDelete service

The FileDelete service is used by an MMS client to delete a file in the virtual filestore of an MMS server.

D.7.1 Structure

The structure of the component service primitives is shown in Table D.5.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 File Name

Result(+)

Result(-)
 Error Type

M
M

M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table D.5 - FileDelete service

D.7.1.1 Argument

This parameter shall convey the parameters of the FileDelete service request.

D.7.1.1.1 File Name

This parameter, of type FileName, shall identify uniquely a single file to be deleted in the virtual filestore of the
MMS server.

D.7.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

D.7.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 379

D.7.2.1 Preconditions

The MMS server shall verify that:

a) the File Name identifies a unique, accessible file in the MMS server's virtual filestore;

b) the file is in a state to be deleted;

c) the MMS client has the privilege to delete the specified file.

If any of these conditions is not met, the MMS server shall return a Result(-) response.

D.7.2.2 Actions

The MMS server shall delete the file as indicated and return a Result(+) response.

D.8 FileDirectory service

The FileDirectory service is used by an MMS client to obtain the names and attributes of a file or group of files in
the MMS server's filestore. The file attributes returned by this service are identical to those returned by the
FileOpen service.

Because a complete response to a FileDirectory-Request could be too large to fit in a single response, this service
may result in a partial response. To obtain a complete response it may be necessary for the client to make multiple
requests.

D.8.1 Structure

The structure of the component service primitives is shown in Table D.6.

 Parameter Name Req Ind Rep Cnf CBB

Argument
 File Specification
 Continue After

Result(+)
 List of Directory Entry
 File Name
 File Attributes
 More Follows

Result(-)
 Error Type

M
U
U

M(=)
U(=)
U(=)

S
M
M
M
M

S
M

S(=)
M(=)
M(=)
M(=)
M(=)

S(=)
M(=)

Table D.6 - FileDirectory service

D.8.1.1 Argument

This parameter shall convey the parameters of the FileDirectory service request.

D.8.1.1.1 File Specification

This optional parameter, of type FileName, shall, when present, identify a file or group of files in the MMS
server's virtual filestore whose attributes are desired. Omission of this parameter shall indicate that the attributes
of an implementation defined default group of files are being requested.

D.7.2 Service Procedure

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved380

NOTE This parameter appears to MMS to be a single file name. However, it is recognized that real file systems usually
have a file naming notation that designates a group of files, such as a directory name or file name containing wildcard
characters. While not dictating the format of file names, the FileDirectory service permits use of group naming
conventions.

The exact action if this parameter is omitted is not specified because no standard interpretation is appropriate in all
cases. If the filestore belongs to a dedicated function device and contains only a moderate number of files, it is
suggested that all be returned. In the case of a file server or multifunction device with a large number of files, it is
recommended that a suitable subset be chosen. In the latter case it is especially important that a notation for naming
groups be provided.

D.8.1.1.2 Continue After

This optional parameter, of type FileName, shall, when present, specify a starting point within an ordered list of
the complete group of files selected by the File Specification parameter. This point may be an entry in the list or
may precede or follow an entry. If present, this parameter signifies that entries preceding and including this point
in the list shall be omitted from the result.

D.8.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

D.8.1.2.1 List Of Directory Entry

This parameter shall consist of an ordered list of zero or more entries, each of which corresponds to a file
matching the requested File Specification, omitting entries in accord with the Continue After parameter.

D.8.1.2.1.1 File Name

This parameter, of type FileName, shall provide the name of the file whose attributes follow.

D.8.1.2.1.2 File Attributes

This parameter shall contain attribute information describing the selected file. This information consists of the
size of the file and time of day and date of last modification. See D.9 for further details of the sub-parameters of
the File Attributes parameter.

D.8.1.2.2 More Follows

This parameter, of type boolean, shall indicate whether (true) or not (false) files were selected that have not been
included in the List Of Directory Entry. This parameter shall be false if the List Of Directory Entry is empty.

If this parameter is true, it shall signify that not all requested information has been returned. In this case, further
action by the MMS client is required to obtain the remaining information.

D.8.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

D.8.2 Service Procedure

D.8.2.1 Preconditions

none

D.8.2.2 Actions

The MMS server shall prepare a list of files whose attributes are to be returned, relying on the File Specification
parameter, if present, for guidance in preparing this list. If the Continue After parameter is present, this parameter
shall be used to establish the position in the list to begin the response. Otherwise, the response will begin at the
beginning of the list.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 381

If the list of files whose file specifications are requested is empty, a Result(+) shall be returned with an empty list
for the List of Directory Empty and a value of More Follows equals false.

If the Continue After parameter is present, and the parameter indicates the end of the list, The MMS server shall
return a Result(+) with an empty list for the List of Directory Empty and a value of More Follows equals false.

Otherwise, a List of Directory Entry parameter shall be prepared, beginning with the beginning of the list or with
the file specified by the Continue After parameter (if present) and continuing either (1) to the end of the list or (2)
to the maximum number that can be transferred by a single PDU. A Result(+) shall be returned together with the
List of Directory Entry created. If the last entry on the list has been reached by this procedure, the More Follows
shall be false; otherwise More Follows shall be true.

NOTE The requirement that the list of directory entries be ordered is imposed so that the meaning of the
Continue After parameter can be specified. It is necessary for Continue After to select a well-defined
point in the list even if the file to which it refers no longer exists. (This might occur if the result of the
FileDirectory service was being used to issue FileDelete service requests.) The properties of this ordering
are only loosely specified to allow implementors maximum flexibility. (The requirements are such that it
may be possible to generate a response "on the fly" starting at the continuation point.)

D.9 File Attributes parameter

This parameter contains attribute information describing a file in a virtual filestore.

D.9.1 Structure

The structure of the component sub-parameters is shown in Table D.7.

 Parameter Rsp Cnf CBB

 Size of File
 Last Modified

M
C

M(=)
C(=)

Table D.7 - File Attributes parameter

D.9.1.1 Size Of File

This parameter, of type integer, shall be a non-negative value that specifies the approximate size of the file in
octets.

D.9.1.2 Last Modified

This parameter, of type GeneralizedTime, shall specify the time of day and date as known to the virtual filestore
when the file was last modified, and is equivalent to the FTAM filestore attribute Date And Time Of Last
Modification. This parameter shall be present if available in the filestore.

D.10 Additional Specification for the Conclude Service

Implementation of this annex imposes an additional constraint on the implementation of the Conclude service. A
received Conclude-Request shall be answered with a Result(-) if a File Read State Machine (FRSM) is currently
active on the particular association over which the Conclude-Request is received.

D.10.1 Additional Specification for the Abort Service

Implementation of this annex imposes an additional constraint on the implementation of the Abort service. Either
the sending of an Abort service request or the receipt of an Abort indication shall result in deletion of all FRSMs,
if any, that have been created (as a result of FileOpen service requests received over the association) and not yet
deleted, and closing of the associated files.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved382

(Blank page)

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 383

Annex E
(informative)

Scattered Access

E.1 Introduction

The following features were present in the first edition of ISO/IEC 9506. Their use is designed to allow
adaptations of older systems to work efficiently in the environment described in Clause 14. The scattered access
facilities allow a supervisor to configure a system containing complex Named Variables following the object
model in 14.3.1 whose Access Method is not Public.

The relevant object model is that described in 14.1.3; to support the facilities described in this annex the object
description techniques employed in ISO/IEC 9506:1990 are used. The description of the Scattered Access object
follows.

The Scattered Access object shall specify a mapping of a single MMS name to a constructed structure composed
of independent MMS variables. Access to the underlying real variables using the Scattered Access object appears
(to the MMS client) as though the Scattered Access object were mapped to a single real variable. Thus, access
using a Scattered Access object is regulated by the requirements of 14.1.1.1. The Scattered Access object is only
available when the vadr, vnam, and vsca parameter conformance building blocks are all supported.

The Scattered Access object provides for the assignment of a name for use when specifying access to a constructed
"structure" composed of independent MMS variables. Each component of this structure is represented by either a
Named Variable object, an Unnamed Variable object, or a Scattered Access object.

The requirements of 14.1.1.1 shall apply for access using this object. Thus, access using a Scattered Access object
is analogous to accessing a single MMS variable having as components the variables referenced by the Scattered
Access object.

NOTE This object is primarily provided in order to support devices that, due to age or simplicity, do not provide for local
definition of Named Variable objects having an access method allowing a variable's value to be determined apart
from the specification of a single base address and that do not provide facilities for arranging the data elements of a
variable so that they may be accessed using a single base address.

The attributes of the Scattered Access object are specified below, followed by a brief description of the services
that operate on this object.

E.1.1 The Scattered Access object - Attributes

Object: Scattered Access

Key Attribute: Scattered Access Name
Attribute: Reference to Access Control List
Attribute: List Of Component
Attribute: Kind Of Reference (NAMED, UNNAMED, SCATTERED)
Attribute: Reference
Attribute: Component Name
Attribute: Access Description

E.1.1.1 Scattered Access Name

The Scattered Access Name attribute shall uniquely identify a Scattered Access object. It is an MMS Object
Name and may be defined with VMD-specific, Domain-specific, or Application Association-specific scope.
When the Shattered Access object is temporarily created for the purpose of a single access, this attribute shall have
the value UNDEFINED.

NOTE A Scattered Access Name exists in the same name space as a Variable Name. For most services (exceptions are
DefineScatteredAccess and GetScatteredAccessAttributes) reference to a Scattered Access object is not
distinguishable from reference to a Named Variable object.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved384

E.1.1.2 Reference to Access Control List

The Reference to Access Control List is a reference to an Access Control List object (see 9.1.1) that provides
conditions under which this Scattered Access Object may be read, written, deleted, or have its access control
changed.

E.1.1.3 List Of Component

This attribute shall provide a list referencing one or more objects, each of which may be either a Named Variable
object, an Unnamed Variable object, or a Scattered Access object. These objects describe the mapping for the
component data elements of the Scattered Access object. The attributes of the elements of this list are described as
follows.

E.1.1.4 Kind Of Reference

This attribute shall indicate the type of object referenced by the Reference attribute. Possible values are:

NAMED - the referenced object is a Named Variable object;

UNNAMED - the referenced object is an Unnamed Variable object;

SCATTERED - the referenced object is a Scattered Access object.

E.1.1.5 Reference

The Reference attribute shall contain a reference, of the type specified by the Kind Of Reference attribute, to an
MMS object that either defines the mapping of an MMS variable to a real variable, or defines a scattered access
mapping to a constructed structure of one or more independent MMS variables, each of which provides a mapping
to a single real variable.

If Kind Of Reference equals NAMED or SCATTERED and the referenced object is deleted, this attribute shall be
set to UNDEFINED, resulting in an OBJECT-INVALIDATED error for the access specified by this Scattered
Access object or any Scattered Access object to which this object is subordinate.

NOTE A referenced Unnamed Variable object is never invalidated or deleted.

E.1.1.6 Component Name

The Component Name attribute provides a name for use when specifying alternate access to this component of the
Scattered Access object. It shall be either UNDEFINED, indicating that alternate access may not explicitly specify
this component, or an Identifier, indicating that this component may be explicitly selected for access or for
additional alternate access specification (see 14.3).

E.1.1.7 Access Description

The Access Description attribute provides a description of the desired access to the MMS variable (or Scattered
Access object) represented by this component of the Scattered Access object. This attribute may have the value
UNDEFINED, indicating that full access using the mapping defined by the referenced object is desired, or it may
specify an alternate (possibly partial) access based upon the mapping defined by the referenced object.

When not equal to UNDEFINED, this attribute is used to alter the externally visible structuring of the data
elements of the complex variable accessed using the mapping defined by the referenced object, or to specify
access to some subset of the set of data elements that is included in the mapping defined by the referenced object,
or both.

NOTE The Access Description does not alter the abstract type of an MMS variable's simple data elements.

The Access Description, along with the mapping defined by the referenced object shall provide sufficient
information (to the VMD) to allow the value of each accessed data element of the referenced real variable to be
determined. A formal definition of alternate access is provided in the definition of the Alternate Access parameter
in 14.3.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 385

E.1.2 Operations On The Scattered Access object

The services that operate upon the Scattered Access object are listed below.

a) Read - This service uses the List Of Component attribute in order to determine the data elements (Named
or Unnamed Variables) and performs the Read operation on these elements;

b) Write - This service uses the List Of Component attribute in order to determine the data elements (Named
or Unnamed Variables) and performs the Write operation on these elements;

c) InformationReport - This service uses the List Of Component attribute in order to determine the data
elements (Named or Unnamed Variables) and performs an Information Report service on these elements;

d) DefineScatteredAccess - This service creates a Scattered Access object;

e) GetVariableAccessAttributes - This service returns the externally visible type description of a Scattered
Access object;

f) GetScatteredAccessAttributes - This service returns the actual attributes of a Scattered Access object;

g) DeleteVariableAccess - This service deletes a Scattered Access object.

E.1.3 Application of Alternate Access to Scattered Access objects

The discussion in 14.3 described the effect of applying an alternate access specification to a variable's type
description. As indicated in that discussion, application of alternate access to a type description results in selection
of the specific nodes (data elements) of the type tree that are to be accessed. These data elements are then
represented to an MMS client using a "derived" type. This derived type controls the specification of the Data
parameter when values of the alternately accessed variable are communicated.

When the Scattered Access object is supported by an MMS server, it is possible to specify alternate access to a
Scattered Access object. The alternate access applies to the derived type resulting from the Scattered Access
object's definition that may include components specified using alternate access.

The derived type of a Scattered Access object is always a structure. This structure has as its components the MMS
variables or Scattered Access objects which are listed in the Scattered Access object's List Of Component
attribute.

Each of these components, in turn, has a derived type that results from applying the component's alternate access
attribute to the type (derived or explicit) of the referenced object.

When alternate access is specified for a Scattered Access object, the Alternate Access parameter selects among the
nodes of the type tree of the derived type represented by the Scattered Access object. The Component Name
attribute of each of the components listed in the Scattered Access object's List Of Component attribute, and the
component names and index ranges that were specified (as parameters of the Alternate Access parameter) when
the Scattered Access object's components were specified, form the basis for selections that may be made when
alternate access is requested for the Scattered Access object.

The result of applying alternate access to a Scattered Access object is a derived type. This derived type controls
the specification of the Data parameter when values of the alternately accessed Scattered Access object are
communicated.

E.2 Variable Specification parameter

The presence of the Scattered Access Object alters the description of the Variable Specification Parameter (see
14.5.2). In addition to the three choices present in Table 74, a fourth choice, that of Scattered Access Description,
is added. The description of that parameter follows:

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved386

E.2.1 Scattered Access Description parameter

The Scattered Access Description parameter is used to describe an access to a "structure" composed of one or
more independent MMS variables. The structure of this parameter is given in Table E.1.

 Conformance: vsca, str2
 Parameter Name Req/Rsp Ind/Cnf CBB

 List of Component
 Component Name
 Variable Specification
 Alternate Access

M
U
M
U

M(=)
U(=)
M(=)
U(=)

valt

valt

Table E.1 - Scattered Access Description parameter

E.2.1.1 List Of Component

This parameter shall contain an ordered list specifying one or more Named Variable, Unnamed Variable or
Scattered Access objects, in any combination, which are to comprise the components of this scattered access.

E.2.1.1.1 Component Name

This parameter, of type Identifier, is optional. If omitted, this scattered access component may not be referenced
by an alternate access. If included, this parameter shall specify the name which shall apply for this component
should alternate access be requested.

E.2.1.1.2 Variable Specification

This parameter shall specify the Named Variable, Unnamed Variable, or Scattered Access object which defines the
location and type of the data element(s) of this component of the scattered access, as well as the grouping of these
data elements into arrays or structures, if applicable.

E.2.1.1.3 Alternate Access

This parameter shall specify the access which is desired to the data elements of the type specified by the variable
specification. If omitted, full access is desired. If included, alternate access is desired.

This parameter shall be omitted if Variable Specification references a single simple data element.

E.3 DefineScatteredAccess service

The purpose of the DefineScatteredAccess service is to allow an MMS client to request that the MMS server
create a Scattered Access object, describing variable access through a structured "variable" constructed from
components which are represented by Named Variable, Unnamed Variable, or Scattered Access objects, in any
combination.

NOTE The ability to define a Scattered Access object has been included in this part of ISO 9506 in order to support those
real systems which, due to simplicity or age, do not provide for local definition of Named Variable objects having an
Access Method allowing a variable's value to be determined apart from the specification of a single base address, and
which do not provide facilities which allow for the server application to arrange the data elements of a variable so
that they may be accessed using a single base address.

E.3.1 Structure

The structure of the component service primitives is shown in Table E.2.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 387

 Conformance: vsca
 Parameter Name Req Ind Rep Cnf CBB

Argument
 Scattered Access Name
 Scattered Access Description

Result(+)

Result(-)
 Error Type

M
M
M

M(=)
M(=)
M(=)

S

S
M

S(=)

S(=)
M(=)

Table E.2 - DefineScatteredAccess service

E.3.1.1 Argument

This parameter shall convey the service specific parameters for the DefineScatteredAccess service request.

E.3.1.1.1 Scattered Access Name

The Scattered Access Name parameter, of type Object Name, shall specify the name which shall uniquely identify
the Scattered Access object at the VMD. This name shall be unique among defined Variable Name and Scattered
Access Name attributes having the specified scope.

E.3.1.1.2 Scattered Access Description

The Scattered Access Description parameter (described in E.2.1) shall specify the component variables (one or
more) which are to be accessed using the Scattered Access object.

E.3.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result does not return
service specific parameters.

E.3.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

E.3.2 Service Procedure

The MMS server shall verify that all the conditions in the Access Control List object referenced by the
&accessControl field of the VMD are satisfied for the service class = LOAD. If this condition is not satisfied, the
service request fails and a Result(-) shall be returned.

The MMS server shall create a Scattered Access object. The newly created object's Scattered Access Name
attribute shall be initialized to equal the Scattered Access Name parameter, its MMS Deletable attribute shall be
initialized to true, and its List Of Component attribute shall be initialized to contain a list of references to the
variable access objects specified in the Scattered Access Description parameter.

The entries of the List Of Component attribute shall be ordered according to the order of entries in the List Of
Component parameter of the Scattered Access Description parameter. Each entry shall have its attributes
initialized as specified below.

a) The Kind Of Reference attribute and the Reference attribute shall be initialized based on the value of the
Variable Specification parameter, as follows:

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved388

1) If the Variable Specification parameter specifies a Name, the referenced object (Named Variable or
Scattered Access) shall determine the value of Kind Of Reference attribute and the Reference
attribute shall be initialized to refer to this object.

2) If the Variable Specification parameter specifies an Address, the Kind Of Reference attribute shall
be initialized to indicate that an Unnamed Variable is referenced and the Reference attribute shall
be initialized to refer to this object.

3) If the Variable Specification parameter specifies a Variable Description, a Named Variable object
shall be created and initialized as specified below and the Kind Of Reference attribute shall be
initialized to indicate that a Named Variable object is referenced and the Reference attribute shall
be initialized to refer to the newly created object. The attributes of Named Variable object are
initialized as follows:

i) the Variable Name attribute shall be initialized to equal UNDEFINED;

ii) initialize the Reference to Access Control List attribute to reference M_Deletable (see
25.3.2.1);

iii) the Type Description attribute shall be initialized to equal the type specified by the Variable
Description parameter's Type Specification;

iv) the Access Method attribute shall be initialized to equal PUBLIC;

v) the Address attribute shall be initialized to equal the Variable Description parameter's
Address.

4) If the Variable Specification parameter specifies a Scattered Access Description, the Kind Of
Reference attribute shall be initialized to indicate that a Scattered Access object is referenced, a
Scattered Access object shall be created and initialized as specified below, and the Reference
attribute shall be initialized to refer to the newly created object. The Scattered Access object's
attributes shall be initialized as follows:

i) the Scattered Access Name attribute shall be initialized to equal UNDEFINED;

ii) initialize the Reference to Access Control List attribute to reference M_Deletable (see
25.3.2.1);

iii) the List Of Component attribute shall be initialized, based on the recursively specified
Scattered Access Description parameter, by recursive execution of steps one (1), two (2)
and three (3) of this procedure.

b) The Component Name attribute shall be initialized to UNDEFINED if this component of the Scattered
Access Description does not contain the Component Name parameter. Otherwise, it shall be initialized to
the value of the specified Component Name parameter.

c) The Access Description attribute shall be initialized to UNDEFINED if the Alternate Access parameter is
absent. Otherwise it shall be initialized to the value of the Alternate Access parameter.

Finally a response primitive specifying Result(+) shall be issued.

E.4 GetScatteredAccessAttributes service

The GetScatteredAccessAttributes service is used by an MMS client to request that the MMS server return the
attributes of a Scattered Access object defined at the VMD.

NOTE The GetVariableAccessAttributes service may be used to obtain the derived Type Specification of a Scattered Access
object.

E.4.1 Structure

The structure of the component service primitives is shown in Table E.3.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 389

 Conformance: vsca
 Parameter Name Req Ind Rep Cnf CBB

Argument
 Scattered Access Name

Result(+)
 MMS Deletable
 Scattered Access Description
 Access Control List

Result(-)
 Error Type

M
M

M(=)
M(=)

S
M
M
C

S
M

S(=)
M(=)
M(=)
C(=)

S(=)
M(=)

aco

Table E.3 - GetScatteredAccessAttributes service

E.4.1.1 Argument

This parameter shall convey the service specific parameters for the GetScatteredAccessAttributes service request.

E.4.1.1.1 Scattered Access Name

The Scattered Access Name parameter, of type Object Name, shall specify the name of the Scattered Access object
whose attributes are being requested.

E.4.1.2 Result(+)

The Result(+) parameter shall indicate that the service request succeeded. A successful result shall return the
following parameters.

E.4.1.2.1 MMS Deletable

This parameter shall be the MMS Deletable attribute of the referenced Scattered Access object. Subclause 9.1.4
specifies the value to be returned by this parameter.

E.4.1.2.2 Scattered Access Description

The Scattered Access Description parameter (described in E.2.1) specifies the component variables (one or more)
that are accessed using the Scattered Access object.

E.4.1.2.3 Access Control List

This parameter, of type Identifier, shall indicate the name of the Access Control List object that controls access to
this Scattered Access object. This parameter shall not appear unless the aco parameter CBB has been negotiated.

E.4.1.3 Result(-)

The Result(-) parameter shall indicate that the service request failed. The Error Type parameter, which is defined
in detail in clause 24, provides the reason for failure.

If the Scattered Access Name parameter references a Named Variable object instead of a Scattered Access object,
the Error Type shall specify Error Class equal to ACCESS and Error Code equal to OBJECT-NON-EXISTENT.

E.4.2 Service Procedure

The MMS server shall locate the specified Scattered Access object and shall return the MMS Deletable parameter
and the List of Component parameter of the Scattered Access Description parameter. Subclause 9.1.4 specifies the

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved390

value to be returned by the MMS Deletable parameter. The List of Component attribute provides the value of the
List of Component parameter.

Entries shall be placed in the List Of Component parameter in the order specified in the List Of Component
attribute of the Scattered Access object. Each entry shall correspond to a component of the Scattered Access
object's List Of Component attribute and shall have its parameters specified as follows:

a) The Component Name parameter shall be omitted if the Component Name attribute is equal to
UNDEFINED. Otherwise, it shall be the Component Name attribute.

b) The parameters of the Variable Specification parameter shall be determined by the values of the Kind Of
Reference attribute and by the values of the attributes of the object referenced by the Reference attribute, as
follows:

1) If Kind Of Reference equals NAMED and the referenced Named Variable object's Variable Name
attribute does not have the value UNDEFINED, then Kind Of Variable shall be NAMED and Name
shall contain the Variable Name attribute of the referenced object.

2) If the Kind Of Reference equals UNNAMED, then Kind Of Variable shall be UNNAMED, and
Address shall contain the Address attribute of the referenced object.

3) If Kind Of Reference equals SCATTERED and the referenced Scattered Access object's scattered
Access Name attribute does not have the value UNDEFINED, then Kind Of Variable shall be
NAMED and Name shall contain the Scattered Access Name attribute of the referenced object.

4) If Kind Of Reference equals NAMED and the referenced Named Variable object's Variable Name
attribute is equal to UNDEFINED, then Kind Of Variable shall be SINGLE and Variable
Description shall contain Address equal to the Address attribute of the referenced Named Variable
object and Type Specification equal to the referenced Named Variable object's Type Description
attribute.

5) If Kind Of Reference equals SCATTERED and the referenced Scattered Access object's Scattered
Access Name attribute is equal to UNDEFINED, then Kind Of Variable shall be SCATTERED,
and the Scattered Access Description parameter shall be specified by recursively applying steps one
(1) through three (3) of this service procedure for the referenced Scattered Access object.

c) The Alternate Access parameter shall be omitted if the Access Description attribute is equal to
UNDEFINED. Otherwise it shall be the Access Description attribute.

Finally a response primitive specifying Result(+) shall be issued.

E.5 DeleteVariableAccess service

The inclusion of the Scattered Access object requires an extension to the DeleteVariableAccess service. Add the
following paragraph to the service procedure for the DeleteVariableAccess service (see 14.11).

If a Scattered Access object is deleted, all referenced Named Variable or Scattered Access objects having name
attribute (Variable Name or Scattered Access Name) equal to UNDEFINED shall also be deleted. This procedure
shall be repeated for each deleted Scattered Access object. Any such referenced objects deleted shall not be
included in the count of the number matched or the number deleted.

E.6 DefineNamedVariableList service

The inclusion of the Scattered Access object requires an extension to the DefineNamedVariableList service. Add
the following paragraph to the service procedure for the DefineNamedVariableList (see 14.12).

a) 4) If the Variable Specification parameter specifies a Scattered Access Description, the Kind Of
Reference attribute shall be initialized to indicate that a Scattered Access object is referenced, a
Scattered Access object shall be created and initialized as specified below, and the Reference
attribute shall be initialized to refer to the newly created object. The Scattered Access object's
attributes shall be initialized as follows:

i) the Scattered Access Name attribute shall be initialized to equal UNDEFINED;

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 391

ii) the Reference to Access Control List attribute shall be initialized to reference an Access
Control List object that will report the value of MMS Deletable as true (see 9.1.4). The
predefined symbol 'M_Deletable' (see 25.3.2.1) may be used for this purpose.

iii) the List Of Components attribute shall be initialized to contain the specified components,
each having attributes initialized as follows:

-- Kind Of Reference and Reference shall be initialized as specified by step one (1) of this
service procedure, based on the value of the Variable Specification parameter of this
component of the Scattered Access Description;

-- Component Name shall be initialized to UNDEFINED if this component of the Scattered
access Description does not contain the Component Name parameter. Otherwise, it shall be
initialized to the value of the specified Component Name parameter;

-- Access Description shall be initialized to UNDEFINED if this component of the Scattered
Access Description does not contain the Alternate Access parameter. Otherwise, it shall be
initialized to the value of the specified Alternate Access parameter.

E.7 GetNamedVariableListAttributes service

The inclusion of the Scattered Access object requires an extension to the GetNamedVariableListAttributes service.
Add the following paragraph to the service procedure for the GetNamedVariableListAttributes service (see 14.13).

a) 1) If Kind Of Reference equals SCATTERED and the referenced Scattered Access object's Scattered
Access Name attribute does not have the value UNDEFINED, then Kind Of Variable shall be
NAMED and Name shall contain the Scattered Access Name attribute of the referenced object.

2) If Kind Of Reference equals SCATTERED and the referenced Scattered Access object's Scattered
Access Name attribute is equal to UNDEFINED, then Kind Of Variable shall be SCATTERED,
and the Scattered Access Description parameter shall be specified by recursively applying steps one
(1) and two (2) of this service procedure for the referenced Scattered Access object.

E.8 DeleteNamedVariableList service

The inclusion of the Scattered Access object requires an extension to the DeleteNamedVariableList service. Add
the following paragraph to the service procedure for the DeleteNamedVariableList service (see 14.14).

If a referenced Scattered Access object is deleted, and it in turn references a Named Variable object having
Variable Name attribute equal to UNDEFINED or a Scattered Access object having Scattered Access Name
attribute equal to UNDEFINED, then that object shall also be deleted. This procedure shall be repeated for each
Scattered Access object, having Scattered Access Name equal to UNDEFINED, which is deleted. Any such
referenced objects deleted shall not be included in the count of the number matched or the number deleted.

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved392

Annex F
(informative)

MMS on TCP/IP

F.1 Introduction

MMS, like most applications developed within the OSI model, can be operated in a TCP/IP environment. The
basic requirements of MMS, a reliable, full duplex, connection oriented communication channel, are satisfied by
TCP/IP. It is only necessary to specify how the various M-services are supported in this environment and to define
the value of the ApplicationReference Type.

F.2 General Internet Environments

The IETF has published several RFCs that describe techniques which can be used by OSI applications to operate
in a TCP/IP environment. The method in most wide spread use is described in RFC 10061. This method has been
endorsed by the IETF and by ISO/IEC JTC1/SC 62. This method provides for a full implementation of Session,
Presentation, and ACSE on TCP/IP. To use this specification, the mapping of the M-services to ACSE and
Presentation described in Annex A is used. This environment provides the full use of Presentation and ACSE
services, and requires no further specification.

Since these upper layers contain many parameters, a profile must be specified for these layers. MMS can operate
with any valid A-profile. The recommended A-Profile is described in ISO/ISP 14226-13.

F.3 References

1[RFC 1006] Rose: "ISO Transport Service on top of the TCP Version: 3", RFC 1006, May 1987

2ISO/IEC 14766 Information technology - Telecommunications and information exchange between
systems - Use of OSI applications over the Internet Transmission Control Protocol
(TCP)

3ISO/ISP 14226-1 Industrial automation systems - International Standardized Profile AMM11: MMS
General Applications Base Profile - Part 1: Specification of ACSE, Presentation
and Session protocols for the use by MMS

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 393

Index
AA . xiii, 6
AA-specific . 3, 33, 35, 75, 272, 283
Abbreviations . 6
Abort . 52
Abort On Time Out . 214, 218, 231, 233
Abstract Syntax . 39, 82
Abstract Syntaxes . 15
Acceptable Delay . 218, 233
Access Condition . 64, 65
Access Control List 27, 60, 62, 112, 136, 190, 197, 202, 210, 227, 274, 285, 305, 341, 384, 389
Access Result . 179, 185
Access Selection . 177, 178
AccessControl 25, 60, 115, 143, 166, 167, 169, 170, 206, 211, 236, 264, 280, 288, 312, 326
AccessMethod . 166, 167
Acknowledged State . 251
AcknowledgeEventNotification . 250
Acknowledgement of Event Notifications . 252
ACSE . 6
AddEventConditionListReference . 316
Additional Code . 351
Additional Detail . 351
Address . 166, 168, 183, 184, 189, 191
Addressing of Application Entities . 362
AddToUnitControl . 155
AE . 6
Alarm Acknowledgement Rule . 249, 259, 296, 307, 309
Alteration of MMS objects . 34
AlterEventConditionListMonitoring . 324
AlterEventConditionMonitoring . 277
AlterEventEnrollment . 308
Alternate Access . 169, 175, 178, 182, 195, 197, 386
Alternate Access . 385
Alternate Access Selection . 176
AlterProgramInvocationAttributes . 139
AP . 6
Application Association . 38
Application Context . 15
Application Entities . 14
Application Processes . 13
Application Reference . 17, 231, 258, 297, 303, 304, 327
Application To Preempt . 218, 220
Array . 172, 180
ASE . 6
ASN.1 . 6
Attach To Event Condition . 261
Attach To Event Condition Modifier . 260
Attach To Semaphore . 232
AttachToSemaphore . 232
Attribute . 3
Authentication Value . 17
AuthenticationValue . 39
Base of Numeric Values . 7
BCD . 174
BINARY TIME . 174
BIT STRING . 174
BOOLEAN . 173
Called MMS-user . 3, 11
Called MMS-user . 357
Calling MMS-user . 4, 11
Calling MMS-user . 357

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved394

Cancel . 53
Cancellation of Modified Service . 262
Capabilities . 26, 84, 88, 94, 99, 103, 106, 112, 144
CBB . 6, 8, 355
ChangeAccessControl . 73
CIS . 6
Class . 173, 180, 212, 213, 226, 269, 274, 304
Classes of objects . 33
Client . 4, 12
Collating . 10
Companion Standards . 363
Component . 177, 178, 384, 386
Component Name . 173, 176
Conclude . 51, 381
Conditioned service response . 59
Confirmed Service Error . 250
Confirmed Service Request . 281, 285
Confirmed Service Response . 250
ConfirmedService-Request . 31
ConfirmedServiceRequest . 280
Conformance . 204, 234, 262, 344, 355, 362, 367
Conformance building block (CBB) . 4, 8
Constraints . 9
Contents . iii
Continue After . 71, 80, 84, 149, 254, 258, 303, 323, 380
Control . 117, 121, 136
Control Element . 144, 148, 150
Control of Access . 34
Control Time Out . 218, 233
Controlled-Program-Invocation . 117
Controlling-Program-Invocation . 117
Conventions . 7
CreateJournal . 342
CreateProgramInvocation . 120
CreateUnitControl . 154
Creation of MMS objects . 34
Current State . 249, 254, 259, 276, 307, 310, 323, 331
CurrentModifier . 31
D-Exchange . 206
D-Put . 236
Data . 4, 179, 186, 331, 337
Data Access Error . 179, 180, 187
Data Exchange . 28, 63, 206, 209
Data Exchange Management . 206
DefineAccessControlList . 67
DefineEventAction . 280
DefineEventCondition . 268
DefineEventConditionList . 312
DefineEventEnrollment . 295
DefineNamedType . 199
DefineNamedVariable . 190
DefineNamedVariableList . 194, 390
DefineScatteredAccess . 386
DefineSemaphore . 222
Definitions . 2
DeleteAccessControlList . 72
DeleteDomain . 110
DeleteEventAction . 282
DeleteEventCondition . 271
DeleteEventConditionList . 314
DeleteEventEnrollment . 299
DeleteJournal . 343

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 395

DeleteNamedType . 202
DeleteNamedVariableList . 197, 391
DeleteProgramInvocation . 123
DeleteSemaphore . 224
DeleteUnitControl . 161
DeleteVariableAccess . 192, 390
Deletion of MMS objects . 34
Discard . 98
Display Enhancement . 250, 254, 259, 266, 269, 275, 278, 291, 297, 305, 310
Domain . . . 4, 27, 62, 87, 90, 115, 121, 135, 141, 143, 144, 146, 149, 150, 154, 156-158, 160, 162, 193, 198, 203,

272, 283
Domain Management . 87
Domain-specific . 4, 33, 35, 75
DomainState . 88
Download . 4
Download Sequence . 92
DownloadSegment . 95
Dynamic Conformance . 360
E-Get . 236
EC-Class . 264
EC-State . 264
Edition . xiv
EeClass . 288
Enrollment State . 259
Entry Class . 231
Entry ID . 231
EntryState . 214
Environment . 36
Environment Management . 37
Error Class . 345
Error Code . 136
ErrorCode . 116
Errors . 344
Establishment of an Application Association . 246
Evaluation Interval . 269
Event . 331
Event Action . 284, 306
Event Action . 250, 279-281, 283, 285, 286, 296, 300, 303, 304
Event Action execution . 245
Event Condition . 249, 261, 272, 306
Event Condition 247, 254, 263, 266, 268, 274, 276, 277, 296, 300, 303, 304, 313, 316, 319, 321, 323, 331
Event Condition List . 64, 316
Event Condition List . 311, 313, 315, 319, 321, 323, 324
Event Condition object attribute value capture . 244
Event Condition object update . 244
Event Detection and Notification . 242
Event Enrollment . 249, 261, 276, 323
Event Enrollment . 251, 258, 287, 291, 296, 300, 303-305, 307, 309
Event Enrollment Deletion . 301
Event Enrollment object attribute value capture . 245
Event Enrollment object update . 245
Event management . 4
Event Management . 241
Event transition processing . 243
EventAction . 28, 39, 63, 89, 116, 289
EventCondition . 28, 39, 63, 89, 115, 212, 288, 312
EventConditionList . 28, 40, 90, 312
EventEnrollment . 28, 40, 63, 90, 116, 265, 280
EventNotification . 248
EventTime . 265
ExchangeData . 207
Execution Argument . 125, 130, 136, 151

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved396

ExecutionArgument . 116
Extended Derivation . 78
Failure . 250
File . 4
File Access service . 368
File Attributes . 381
File Management services . 370
File Name . 103, 104, 106, 109, 159, 161, 373, 377, 378, 380
File Name . 372
File operation . 4
FileClose . 375
FileDelete . 378
FileDirectory . 379
FileOpen . 373
FileRead . 374
FileRename . 376
Filestore . 4
FLOATING POINT . 174
Foreword . xii
Free . 228
FRSM . 6, 373, 375, 376
FTAM . 6
General Management . 36
GENERALIZED TIME . 174
GetAccessControlListAttributes . 68
GetAlarmEnrollmentSummary . 256
GetAlarmSummary . 252
GetCapabilityList . 84
GetDataExchangeAttributes . 209
GetDomainAttributes . 111
GetEventActionAttributes . 284
GetEventConditionAttributes . 273
GetEventConditionListAttributes . 321
GetEventEnrollmentAttributes . 302
GetNamedTypeAttributes . 201
GetNamedVariableListAttributes . 196, 391
GetNameList . 79
GetProgramInvocationAttributes . 134
GetScatteredAccessAttributes . 388
GetUnitControlAttributes . 157
GetVariableAccessAttributes . 188
Guidance To Implementors . 205
Hung . 228
Identify . 81
Index . 177, 178, 393
Index Range . 177, 178
Information . 4
InformationReport . 187
InitializeJournal . 339
Initiate . 45
InitiateDownloadSequence . 93
InitiateUnitControlLoad . 145
InitiateUploadSequence . 98
Input . 237
INTEGER . 174
Internet . 392
Invocation Identifier . 11
Invoke ID . 304
InvokeID . 30, 213, 289
Invoking an Event Notification . 246
Journal . 4, 28, 40, 64, 326, 327, 329, 337, 339, 341-343
Journal Entry . 330, 337

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 397

Journal Entry . 327
Journal Management . 326
Journal-Variable . 328
Keywords . xiii
Kill . 133
Kind Of Access . 181
Last Transition To Active . 259
Last Transition To Idle . 259
List Of Modifier . 11
Load Data . 96, 100, 144
LoadDomainContent . 105
LoadUnitControlFromFile . 159
Local Detail . 46, 48, 77
Local matter . 4
Local-Control . 29
Local-detail . 27
Logical Status . 77
LogicalStatus . 25
M-ASSOCIATE . 15
M-DATA . 19
M-P-ABORT . 20
M-RELEASE . 17
M-U-ABORT . 19
M-Violation . 354
M_DAYTIME . 353
M_Deletable . 353
M_ELT . 353
M_Never . 354
M_NonDeletable . 353
M_powerProblem . 352
M_ReadOnly . 354
Max Serv Outstanding . 46, 48
Meaning . 168, 170, 190, 202
MMPM . 5, 6
MMS . 6
MMS Deletable . 65, 112, 189, 196, 202, 226, 274, 284, 304, 341, 389
MMS Deletable . 136
MMS Environment . 38
MMS Standardized Names . 351
MMS STRING . 174
MMS-environment . 5
MMS-provider . 5
MMS-user . 5
MMSAccessControlList . 352
MMSEventCondition . 352
MMSNamedVariable . 352
Model Name . 82
ModelName . 24
Modifier . 280, 281, 285, 288
Modifier Position . 351
Monitored . 267
Monitored event . 5
Monitored Variable . 269, 274
More Follows . 72, 81, 85, 96, 100, 148, 229, 231, 255, 260, 305, 323, 332, 375, 380
Named Token . 218, 219, 222, 231, 233
Named Type . 170
Named Variable . 166
Named Variable List . 168
Named-token . 212, 228
NamedToken . 212, 213
NamedType . 28, 39, 63, 89
NamedVariable . 28, 39, 62, 89

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved398

NamedVariableList . 28, 39, 62, 89
NC . 6
Nesting Level . 46, 48
Network-triggered . 266
Network-triggered event . 5
NormalPriority . 213
NormalSeverity . 265
Normative References . 1
Notification Lost . 249, 259, 307
NotificationLost . 289
Object Class . 36
OBJECT IDENTIFIER . 174
Object lifetime . 33
Object modelling . 7
Object Name structure . 35
Object visibility . 34
ObtainFile . 369
OCTET STRING . 174
Operation State . 77
Operator Communication . 235
Operator station . 5
Operator Station . 235, 236, 238, 240
OperatorStation . 28, 63
OSI . 6, 22
OSI Communication . 361
OSI Environment . 13
Output . 239
Owned . 228
Owner . 212
Packed . 172, 173
Parameter CBB . 47, 49
Parameter CBBs . 356
Parameter Conformance Building Blocks . 263
ParameterSupportOptions . 41
Password . 66
PC . 6
PDU . 6
Physical Status . 77
PhysicalStatus . 26
Pool Semaphore . 216
Post-executionModifier . 31, 32
Pre-excutionModifier . 30, 31
Predefined object . 5
Presentation Context . 15
Priority . 213, 218, 231, 233, 247, 264, 269, 274, 278, 325
Program Invocation . 5, 145, 147, 150, 152-154, 156-158, 160, 162, 210
Program Invocation . 113, 118
Program Invocation Management . 113
Program Invocation State . 145, 153
Program Invocation State . 152
Program-Location . 117
ProgramInvocation . 27, 62, 89, 143, 207
ProgramInvocationState . 114
Prompt Data . 238
PSAP . 6
Read . 184
ReadJournal . 328
Receiving MMPM . 5, 12
Receiving MMS-user . 5, 12
ReconfigureProgramInvocation . 141
References . 392
Reject . 55

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 399

Relinquish If Connection Lost . 218, 231, 233
RelinquishControl . 221
RelinquishIfLost . 214
Remaining Acceptable Delay . 304
Remaining Time Out . 231
RemainingAcqDelay . 214
RemainingDelay . 289
RemainingTimeOut . 214
RemoveEventConditionListReference . 318
RemoveFromUnitControl . 156
Rename . 82
ReportAccessControlledObjects . 71
ReportEventActionStatus . 285
ReportEventConditionListStatus . 322
ReportEventConditionStatus . 275
ReportEventEnrollmentStatus . 306
ReportJournalStatus . 340
ReportPoolSemaphoreStatus . 227
ReportSemaphoreEntryStatus . 229
ReportSemaphoreStatus . 226
RequestDomainDownload . 102
RequestDomainUpload . 104
Requester . 212, 213
Requester Role CBBs . 355
Requesting MMS-user . 5, 12
Reset . 132
Responder Role CBBs . 355
Responding MMS-user . 5, 12
Resume . 129
Revision . 24, 82
Running Mode . 125
Running-Mode . 117
SAP . 6
Scattered Access . 383, 385-387, 389
Scope . 1
Scope of Names . 32
SDU . 6
Security . xiii
Segmented Services . 92
Select . 137
Select Access . 178
Select Alternate Access . 177
Semaphore . 5, 28, 63, 66, 211, 213, 218, 222, 223, 225, 226, 228, 230, 232
Semaphore management . 5, 210
Semaphore-entry . 212, 214, 230
Sending MMPM . 6, 12
Sending MMS-user . 6, 12
Server . 6, 12
Server Conformance . 357
Service CBBs . 355
Services Supported . 47-50
ServiceSupportOptions . 40
Severity . 249, 254, 258, 265, 269, 274
Simple . 173, 180
Size . 174
Standardized object . 6
Start . 124
StartUnitControl . 151
Static Conformance . 204
Static Conformance . 357
Status . 78, 87
Status Response . 77

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved400

Stop . 128
StopUnitControl . 152
StoreDomainContent . 107
StoreUnitControlToFile . 160
Structure . 173, 180
Success . 179, 186
Support for Priority . 235
Support for Time . 234, 263
TakeControl . 217
TCP/IP . 392
TerminateDownloadSequence . 97
TerminateUploadSequence . 101
Third Party . 106, 109, 159, 161
Time Active Acknowledged . 259
Time Idle Acknowledged . 260
Time Of Acknowledged Transition . 251
Time Of Last Transition To Active . 255, 276, 323
Time Of Last Transition To Idle . 255, 276, 323
TimeActiveAck . 291
TimeIdleAck . 291
TimeToActive . 265
TimeToIdle . 266
Token . 223, 227
Token semaphore . 216
Transaction . 30-32, 39
Transfer Syntax . 15
Transition . 310
Transition Time . 249
Transitions . 289, 296, 307, 309
TriggerEvent . 247
Type Description . 173, 175, 189, 202
Type Name . 175, 200, 202, 203
Type Specification . 173, 175, 183, 191, 200, 209
TypeDescription . 166, 167, 170, 171
ULSM . 6, 44, 90, 99-101, 112
Unacknowledged State . 255
Unit Control . 143
UnitControl . 27, 62
UnitControlLoadSegment . 147
UnitControlUpload . 149
Unnamed Variable . 165
UnnamedVariable . 27, 62
UNSIGNED . 174
UnsolicitedStatus . 79
Upload . 6
Upload ID . 149, 150
Upload Sequence . 92
Upload State Machine . 90
UploadSegment . 100
User . 66
V-Get . 165
V-Put . 165
VADR-only . 205
Value . 166, 167, 180
Variable . 6, 181, 182
Variable access . 6, 163, 185
Variable Access Specification . 181, 185, 186, 188
Variable Description . 183
Variable List . 182, 194, 196, 198
Variable Specification . 182, 195, 197
Variable Specification . 385
Variable Specification . 386

FINAL DRAFT / PROJET FINAL

ISO 9506-1: 2002(E)

© ISO 2002 – All rights reserved 401

Vendor Name . 82
VendorName . 24
Version Number . 46, 49
Virtual Manufacturing Device . 21
Virtual Manufacturing Device (VMD) . 6
VISIBLE STRING . 174
VMD . 6, 24
VMD Specific . 272, 283
VMD Support . 76
VMD-specific . 6, 32, 35
VMDReset . 86
VMDStop . 85
VNAM-only . 205
VNAM-with-VADR . 205
VT . 7
Write . 185
WriteJournal . 336

FINAL DRAFT / PROJET FINAL

ISO/FDIS 9506-1:2002(E)

ICS 25.040.40
Price based on 400 pages

© ISO 2002 – All rights reserved

